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1. INTRODUCTION/SCOPE OF THIS RESEARCH

With the increase in use of digital communications has come a
renewed interest in nonlinear filtering techniques. In some signal
processing applications the suppression of noise on a discrete-time
signal sequence can not be adequately accomplished using linear
filtering. In order to preserve sharp edges in a signal while still
smoothing noise and removing impulsive components requires some
type of nonlinear or adaptive filtering.

The most common nonlinear smoother to be investigated is the
median filter. In this filter the median is taken from a finite
length window of values surrounding the input value. This scheme
has been shown to preserve edges in signals with a minimum of
distortion and is resistant to outliers in the data. However, it often
does not provide adequate smoothing of noise that is not by nature
impulsive. Yet the desirable properties of median filtering make it
worth investigating. —

Several methods have been investigated to overcome the
limitations of median filters while retaining some of its
advantageous properties. These methods have sought to retain tl:xe
impulse rejection and edge preservation properties of the median
filter while improving the Gaussian noise suppression. Several of
the more prominent filters are discussed in Section 1I. This section
shows the progression of hybrid filter designs combining the
desirable properties of linear and nonlinear filters.

Yet this progression, while impressive and important, does not
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NOMENCLATURE *
Throughout the course of the simulation several different ‘
methods were used to describe the various filters and filter b
operations under consideration. First, median and mean refer to (
the two filtering operations denoted by those words: median and '
mean filters. However, the word median is also used in several -
titles to denote transfer functions that were calculated using the R
median method described in Appendix A. Transfer functions not 3
calculated using the median method were calculated by averaging. n
The a—trimmed mean and a—trimmed linear filters are denoted '
by either a-TM and a~TL or a—-TM and a-TL. The size and f
number of elements trimmed is also often specified in most titles. i
An a-trimmed mean filter of length 9 with 4 elements trimmed is '
specified by a~TM 9T4. Note that a~TM 9TO is the same thing as
mean 9 or mean L9 and that a~TM 9T8 is the same thing as -
median 9 or median L9. .
The a-trimmed linear filters are specified in the same manner i
with an additional designation to show which linear filter is being x
used. The linear filter designation standing alone refers to the b
untrimmed linear filter. For example, LPF1500 L31 refers to a low :.'
pass filter of 31 elements with a cut off frequency of 1500Hz 3
(based on a 10kHz sampling rate). Equivalent designations for this A ,.
same filter are LPF.15 L9 and LPF1500 9. The numbers following 3
the three letter filter designation—LPF, BPF, or HPF—indicate a ;
frequency associated with that filter. For the low pass and high :
gy 10 n7 168 3
-
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pass filters this number represents the frequency in the center of
the transition band, the cut off frequency. For the band pass filter
the number represents the frequency in the center of the pass
band. The frequency may be specified as a normalized frequency
from 0 to 0.5 or as a frequency in Hertz based on a 10kHz
sampling rate. Designations for an a—trimmed linear filter look like
a-TL BPF2500 31T2. This designation is for a 31 element band pass
filter with a pass band centered at 2500Hz having 2 elements
a—-trimmed.

There are some special one letter designations. BPF2500s is used
to identify the “skinny” BPF centered at 2500Hz with a sharper
roll off than BPF2500. The following one letter designations refer to
the filters opposite them:

X(tra low pass)  LPF300

L(ow pass) LPF1500
B(and pass) BPF2500s
F(at band pass)  BPF2500
H(igh pass) HPF3500.

These designations were used when a condensed notation was
necessary. They are often seen as F31T2 to designate a-TL
BPF2500 31T2.
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3
address a particularly important characteristic of linear filters: ;
frequency selectivity. There are many applications in which the ,,.
signal of interest is not obtained using a simple low pass filter—the ?2:'55
median filter being a low pass operation—but rather a filter ,u;
selecting some other frequency band. It is addressing these e
applications—matched filter banks and IF and RF filters, for ‘;{;
example—to which this research effort is directed. 5

It is a relatively simple matter to design a linear filter to pass ;-_’t.
a certain band of frequencies. However, if the environment é :

through which the signal is propagated happens to be impulsive
rather than Gaussian, say under the polar ice cap as an extreme

example, then a linear filter may not provide adequate smoothing

of the noise. In this case it would be desirable to have some of the :!C
outlier resistance properties of the median filter in order to deal ,
with the impulsive noise. :{,)
Section 11l describes the generalized order statistic filter (GOSF) ,.
model. An a-trimmed linear (a—TL) filter is defined using this );«_{
model which is an attempt to meet the goal of a frequency -:\;
selective filter having the outlier resistance properties of the ;'
nonlinear median filter. In this section the a-TL filter model is : :
defined based on the logical progression of hybrid filters described in o
Section Il. Several important considerations of this design are also -_:
discussed at the end of Section III. X
In Section IV some performance measures are defined with ,,
which the a-TL filter will be evaluated. For this filter model the ]
performance measures of interest are, of course, outlier resistance };
b
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3
and frequency selectivity. Special attention is given to how the o
frequency performance of the nonlinear a-TL filter is assessed. A '3‘,
brief discussion of some of the important simulation parameters is ha!
also included. ; 4
The results of the simulation are presented in Section V. "‘:’21
Several effects of the trimming process on the linear filter o
characteristics are discussed to provide insight into the filtering 7
mechanism. More importantly, several specific effects of filter ' 3
coefficient parameters on the performance of the a-TL filter are FE
discussed in detail. This discussion centers on how varying certain
'Y

filter design parameters such as the number of elements in the A
filter and the steepness of the designed filter rolloff seem to affect
the performance of the a—trimmed filters in general. :
UL
The analysis of these effects is summarized in Section VI. The ";
Ay
overall performance of the a-TL filter is assessed and possible .;:.:
avenues for improvement/future research on the trimmed linear .'
filter are discussed. "-r
3
e
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11. THE ORDER STATISTIC FILTER
A. THE L FILTER

Bovik, Huang, and Munson introduced a generalization of the
median filter which they called an order statistic filter (OSF). This
filter uses some linear combination of the ordered data in a
window around an input point to produce the output. With the
proper choice of coefficients one may create a running mean filter
(all the coefficients equal to 1/N), a median filter, or something in
between. In addition, a minimurn or maximum filter is also a
special case of the OSF.! Lee and Kassam noted that an OSF is the
same thing as an L filter since an L filter is, by definition, a
linear combination of order statistics.?2

Lee and Kassam went on to develop a simple representation of
the L filter called an a-trimmed mean (a-TM) filter. In this
representation the filter has a requirement that all the weights in
some central portion of the window be equal to a constant with
the rest of the weights taken to be zero. The number of samples
trimmed off each end of the window, T, is parameterized by a,

T = La(2N+1)_], where 0<a<0.5 and | X | is the largest integer less
than or equal to X. This filter also has the two special cases of the
running mean filter, a=0, and the median filter, a=0.5. The
parameter a is chosen based on a priori knowledge of the noise
distribution or by an adaptive scheme.3
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The output y), for this filter is given by

2N+1-T
v = 2 xkp/[2N-T)+1], (1)
=T+l

where x*(;) is the j'® order statistic of the window centered
around the kP element in the signal. Lee and Kassam observed
that the a—TM filter possesses a clear trade—off between the
advantages of a mean and a median filter. As a approaches 0 or
6.5 the characteristics of the filter approaches a mean or median
filter, respectively.4

B. M FILTER

Lee and Kassam also proposed an M filter with a more
favorable combination of the two individual filters’ characteristics.
The output y, of an M filter is defined as the solution to the

equation

k+N

2 B(x-yy)=0, (2)
j=k-N

where @ is some odd, continuous, and sign-preserving function.
When @ is the linear function @(x) = ax, for a=constant, the M

.
-
---------------------------------------------
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filter reduces to the running mean filter. On the other hand, the

M filter’s characteristics approach those of the median filter as v
®(x)—sgn(x) under certain conditions.5 They also defined a
standard type M filter (STM filter) as a limiter type filter for

which
g(p), X >p
o(x) = 1 g(x), bd < p (3) N
-s(p), X <-p

and g(x) = ax as shown in Figure 1.

[ ) b

4

s

F
A

-
x
£

Ay T X .

Figure 1: @(x) for a STM filter®

&

.

The STM filter was found to have very favorable "
characteristics. Its window is somewhat data dependent so that it

RS

tends to treat as outliers those values which are very large or N

R

very small as compared to the median. This leads to the 'y

interpretation of an STM as a data dependent type of L filter that 1

g

may have a nonsymmetric window. Lee and Kassam concluded 8

3
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A
that an STM tended to act as a running mean filter when neither ;
edges nor impulsive noise were present and as a median filter over =}E§
areas with edges. It combined the advantages of the two types of ;
filters more favorably than an L filter. The major disadvantage of N'
the STM is that it is difficult to evaluate the output of the filter. f‘-
In their simulation, Lee and Kassam used the iterative Newton's o
method.? 4
Finally, Lee and Kassamn noted that the main difference ::':?
between an o-TM filter and an STM filter was that the number of o
samples trimmed frorn each end of the window of an STM was ;:,
data dependent and not necessarily symmetric. This was the 3
reason STM filters could outperform the simple a—TM filter. J
Applying this observation they came up with a modified trimmed *
mean (MTM) filter which is simple to implement and, in many .37
cases, produces results at least as good as those obtained with an 3
STM filter.® G
The MTM filter first determines the sample median m, inside :5‘_
its window and then chooses an interval [m, - q, my + q] using 2
some preselected constant q. All data samples whose value lie
outside the range are discarded and the average of the remaining E'Ii
values is taken as the output at sample k. This is a similar ‘
operation to an a-TM filter only for the MTM filter the range T
around the median is the determining factor in how many samples '?
are discarded instead of the constant number of discarded samples 'E
determining the range of values to average in the a-TM filter. The \;’
MTM filter also differs from the STM filter in that the MTM filter :
4
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may discard the values that lie outside the preselected range
whereas the STM filter only limits these values to the range itself.°?
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I11. THE GENERALIZED ORDER STATISTIC FILTER

]

A. DEFINITION :,
Seeing these developments and the improvements that they ‘
allow makes one wonder at the possibilities of merging the E:
capabilities of linear and nonlinear filtering techniques. Using the ”
notation that has been discussed up to this point, we will look at é
the possibilities of a filtering scheme proposed by Ritcey that may 'l:
be called a generalized order statistic filter (GOSF). The scheme o
works like this: a signal is passed through a. set of time weighting ":é
coefficients designed for some particular frequency response. But §
before the results are summed, the values are ordered and -;
trimmed according to some scheme. This is easier to visualize &
graphically as shown in Figure 2. :’.E
3
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Figure 2: Generalized Order Statistic Filter
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A notable feature of this system is that many other filters are
special cases of this generalized model. As with the L filter in
general and the a-TM filter specifically, the running mean and
median filters are easily and obviously attained by choosing the
proper coefficients for this model. In addition, one notes that the L
filter is also a subset of this general model if we choose all of the
a,’s to be unity. Finally, one can also obtain an MTM filter by
providing a mechanism to check the signal values as they come
out of the sorter and choose the b, coefficients based on the
median and a preselected range parameter.

The output 2, is given by

2N+1-T

z = (1/8) Z by @)
J=T+1

where yX(;) = ordered[y;] centered around x, and

yi=alxi; i=1,2,...N (5)

and g is the gain factor to be discussed later.
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B. THE o~-TRIMMED LINEAR FILTER

The a-trimmed linear (a-TL) filter is obtained from the
generalized order statistic filter by using a set of linear filter
coefficients as the time weighting coefficients. The signal enters a
window and is weighted by the a,’s just as if it were going to be
linearly filtered. Only before the weighted values are summed to
produce the filter output as in a linear filter operation, they are
sorted and trimmed (the b,’s being restricted to zero or one).
Thus we have a sort of trimmed “linear” filter similar to the
a-trimmed mean filter. The main difference between the two
filters is that the a—TM filter has a,’s that are a constant equal to
1/(N-T) while the a-TL filter has a set of FIR coefficients for the
a,’s which are modified by a constant, the gain factor g.

C. GAIN

A serious consideration in this model ic the gain of the system.
Without some modification, if a set of linear FIR filter coefficients
that sum to a particular value (say unity for a low pass filter)
are used and then some of the values are trimmed off, there
would be some gain in the systemn that may make it difficult to
see what is actually happening. To take into account the gain of
the system we look at what happens to a constant signal passing
through it. To overcome the attenuation the linear set of

coefficients are ordered and those coefficients that would not be
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trimmed by the filter are summed. As an example, suppose a
constant signal of unity was passed through a hypothetical seven

element LPF whose coefficients were as follows:

where 2‘. a, = 1.

Ordering these we would get -1, -1, 2, 2, 4, 4, and 6 sixteenths.
If, in our filtering scheme, we happened to trim off the largest
and smallest values and summed the result we would get 11/16 as
the filtered output of the constant unity input. Thus our gain
needs to be 16/11 which corresponds to summing the a,’s that are
not trimmed and dividing the filter output by this amount. The

gain factor is given by

T/2

g = 2 a, - 2 (a(i) + a(m,l_l)) (6)
=1

where the a(y = ordered[a;] and T is the number of elements

being irimmed (always even). In general, however, a filter
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IV. PERFORMANCE EVALUATION

A. PERFORMANCE MEASURES 9
o

In evaluating this proposed filtering scheme concentration will :.‘.:;

be focused on two major filter characteristics. Our primary .';s:l
interest will be trying to maintain the frequency selectivity of a -
linear filter (i.e. being able to create a filter to pass a certain ;
frequency band) while adding in the inherently nonlinear i
characteristic of outlier resistance. These two capabilities do not g
exist simultaneously in any of the filters discussed previously. In <4
all of the filter models discussed up to this point the application '
was assumed to be that of a low pass filter. What if the ’
1

application calls for a selection of some other frequency band as o
the signal of interest? In this case a linear filter is needed, but we
already know that a linear filter is highly susceptible to the effects i
of outliers on the input signal. Is there a filter design that will
allow a frequency selection of other than a low pass filter while :
providing improved performance in the presence of impulsive noise? s
We are going to evaluate the proposed a—trimmed linear filter in i’
regards to these two performance measures: outlier resistance and '
frequency selectivity. b,
FREQUENCY SELECTIVITY e
The evaluation of the frequency selectivity of a filter is going to ,"

be based on how well the modified filter’s frequency characteristics .::
match that of the unmodified linear filter. This criteria was chosen :'E:j
)
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because it is relatively simple to evaluate. It does not require any
modification of the filter coefficients. We can just compare how o
well the frequency response of the modified filter compares to that
of the unmodified filter. This allows an evaluation of how the
ordering and trimming of the a-trimmed linear filter affects the R
frequency characteristics of the original linear filter.
We could have chosen to set a particular frequency

characteristic as the desired response and, through some iterative é
procedure, changed the coefficients of the filter adaptively to best .
imitate this desired response. However, due to the nonlinear o
characteristics of the a—TL filter this could prove difficult to do. o
Therefore, this possibility was not explored. This could be an area
for further study. N

In evaluating the frequency selectivity of the a-TL filter we 1
will first compare visually the frequency response characteristics of i

the a-TL filter to those of the original linear filter. This may allow
a quick insight into the actual physical process of the filter and

&1

. may suggest ways to improve filter performance. Second, we will e,
do an error analysis of the modified filter’s frequency
characteristics compared to those of the original linear filter. This

X AR PR

will allow a quantitative evaluation of how much degradation in P
frequency performance is introduced by the a—-trimming process.
TRANSFER FUNCTIONS

A problem encountered here is how to measure the frequency
characteristics of a particular a-TL filter. The frequency response
of an FIR filter is found simply by using an impulse as the input

o 3 ¥ % 2% ) A% N L% " L% L L W ¥ W% 3% TEIE, 3 o7 LR e RIS P o IR Y N 2 ™
‘l'-,ﬂ':,l‘o l'!“- ':‘\'."l'!"’e.ﬂ‘ D A0A 2 V9N, AL SR U W% (L0 O b Loy . .l. 00.."{\. by ofy ’P\‘ ATy




16

to the filter and taking the DFT of the output. This is the transfer
function of the filter because the DFT of the input (an impulse) is
unity at all frequencies. However, we cannot find the transfer
function of the a—trimmed linear filter in the same manner
because it is designed to reject impulses in the input signal. By
using an impulse as the input into an a—TL filter, with even only
two elements trimmed off, the output of the filter is going to be
zero at all times.

To overcome this limitation in measuring the transfer function
of the nonlinear filter, white Gaussian noise was used as the input
to the filter. The transfer functions were then computed as
follows. An input x(n) of white Gaussian noise was filtered to get
the output y(n). The input and output sequences were both
Fourier transformed to get X(ei®) and Y(e¥®), respectively. The

transfer function H(el®) was given by

H(ed)| = [Y(ed)] / [X(ed)]. (7

This calculation gives the proper magnitude of the transfer function

which is more often calculated by

T, = Py / Py (8)

where P, is the cross power spectral density of the output with
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the input ( = Y(eJ*)X*(e)w) ) and P,, is the auto power spectral
density of the input ( = X(ew)X*(eJ») ). This calculation preserves
the phase information of the transfer function as well. However,
we are only interested in the magnitude of the transfer function.

Experimentally it was found that by choosing a window
function for the input signal that minimized leakage, the transfer
function for the linear FIR filter calculated using white noise as the
input was equal to.the transfer function using an impulse to
within the resolution of the computer. That is to say the error
between the transfer functions calculated using the two different
inputs, if any, could easily be attributed to round off error within
the machine. The window function is discussed in more detail in
Appendix A.
OUTLIER RESISTANCE

As was noted previously, FIR filters inherently perform poorly
in the presence of impulsive noise on a signal. This is due to the
effect a large impulse has on a linear filter. Being summed in each
element as the entire window passes over it creates a bias in the
output signal in the direction of the impulse. We would like to
minimize the effect of an outlier by discarding it as in a median
type filter. If this were possible then the effect of an impulse on
the input signal would become very small. The only performance
sacrifice would be, in effect, a shortening of the filter length by
one element thus decreasing the Gaussian noise suppression
capability of the original linear filter. While this is a simplification

of the actual filtering process, it serves to illustrate the differences
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o
in effect an impulse has on a linear filter versus a nonlinear filter. .
We can evaluate a filters performance in rejecting outliers in ";:
two ways. The simplest and most straightforward method is a .';"
visual measure of comparing graphs of test signals to see which :
filter produces the smoothest output with impulses present on the .':E
input signal. While this method may seem imprecise it does aliow "f
an immediate evaluation of a filter’s performance upon a ‘
particular input signal and a quick comparison of different filters’ "
performance. By comparing the input to the output at any given .:'3.
instant it also gives an insight into the filter’s physical process. .'"
This gives an understanding of why a filter performs well in some s.
situations and poorly in others and may suggest ways to modify a :
particular filter design to perform better in some respect. i
The second method for evaluating performance would be to
compute the error between the filter output and the uncorrupted SI
input signal to try to numerically determine which filter best 4
smooths noise. This would allow a direct comparison of different .."';f
filters’ performance on a particular set of input signals. With a :,;’
proper choice of test signals we should be able to derive some S
insight into how well a particular filter design will perform under a .}
given set of input conditions. In order to find out what trade-offs : j
are being made we will evaluate the performance of several filter 3
designs on several different input signals under three test o
conditions: 1) the signal corrupted by Gaussian noise only; 2) the
signal corrupted by impulsive noise only; and 3) the signal ; Q

corrupted by both Gaussian and impulsive noise. This will allow us
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to see if, by adding a capability to deal with outliers on the input

signal, we are giving up too much Gaussian noise suppression.

B. SIMULATION APPROACH

There are several specific aspects of the simulation that are
worth mentioning. First, the equations for the calculation of the
transfer functions for the frequency selectivity tests, given in part
A of this section, do not allow the transfer functions to be
calculated deterministically. Since the inputs for these calculations
were Gaussian noise, and therefore random, the transfer functions
were found probabilistically. Five hundred trials of random noise
were generated to calculate each transfer function. Each of these
were sent through the filter separately, Fourier transformed
separately and then the output transform magnitude was divided
by the input transform magnitude to generate a single trial
transfer function and stored point by point. When the transfer
functions of all 500 trials had been calculated and stored, the
results for each point were then ordered from smallest to largest.
The median at each point was chosen to represent the transfer
function of the a-TL at that frequency.

The median was used instead of the mean in determining the
transfer function at each point for two reasons. First, the
histogram of values at each point usually was quite skewed. Most
of the values were lumped at a certain distance from zero (there

could be no negative values) with an exponential distribution fading

.....
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away from the main lobe. Second, and more importantly, due to
the nonlinearity of the filtering there were individual values which
were hundreds of times larger than most of the others. These
individual values could affect the output at a single point by as
much as 208 of the average value. For a complete discussion of
the transfer function histograms see Appendix A.

Second, in evaluating the outlier resistance performance of the
a-TL filter and comparing it to some of the other filters described
previously it was important to develop a set of test signals that
would allow observations on particular signal characteristics. This
was basically narrowed to a comparison of signals with only
smooth, “slow” variations—slow being relative to the frequency
band of the filter—to signals with sharp edges. A suitable set of
input signals was developed and included several signals of very
smooth slow vériations, a sine wave or slow ramp, for example,
several signals of step functions and a couple of combination
signals. The combination signals generally showed the most
interesting results and are used for most of the examples shown in
Chapter V.

Once this set was developed each signal was corrupted with
noise. To each signal was added 1) Gaussian white noise only; 2)
impulsive (Laplacian or double-exponential) white noise only; and
3) both Gaussian and impulsive additive noise. The purpose of these
three testing schemes was to try to show that the a-trimmed
mean and a-trimmed linear filters performed better than some of

the other models in impulsive noise. The comparisons would allow
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us to see how much Gaussian noise suppression was being given up
for this outlier rejection. i
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V. RESULTS
A. FREQUENCY SELECTIVITY

As one would probably expect, the frequency characteristics of
the a-trimmed linear filter are similar to those of the
corresponding linear filter. However, as one might also expect,
the frequency performance is not as good. Naturally, trimming
elements off of a set of coefficients will produce some side effects, a
degradation of performance. This is especially pronounced in the
a-TL filter for a couple of reasons. |

First, we have a randomness associated with the nonlinearity
of this particular trimming process. The element chosen to be
trimmed, and thus the effect a particular coefficient of the linear
filter has on the output at a given time, varies from point to
point depending on the input data surrounding the point. The
trimming takes on a data dependence. This inherent nonlinearity
of the filter introduces a randomness that can only be expected to
upset the balance of a set of linear coefficients.

Second, although the trimming is data dependent and therefore
somewhat random, in this filter it is the largest and smallest (or
rather the largest positive and largest negative) values that are
trimmed. In the absence of large outliers on the input signal, we
can expect that these values will correspond to some of the largest
(in absolute value) filter coefficients. This means that some of the

coefficients that would normally contribute the most to the output
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at a given point in the linear filter are the elements that are being
trimmed.

These two observations help ﬁs understand some of the process
that causes a degradation of perforrnance. Experimentally,
however, several interesting and perhaps not so intuitive things
were discovered about what effects the a-trimming process has on
a set of linear filter coefficients and the effects of certain filter
coefficient parameters on the trimming process itself. Specifically
there were three notable items: 1) the effects of the filter's
length; 2) the effects of the designed linear filter’s rolloff
characteristics; 3) the symmetry properties maintained through
the trimming; and 4) the DC gain problem the a-trimming process
introduces. Each of these topics will be discussed in some detail.
EFFECTS OF FILTER LENGTH

As we know from linear filter design class, the more elements
we have in a filter the better the frequency response we may
obtain. More elements in the filter mean we can design a better
attenuation in the stop band, a steeper rolloff in the transition
band, a flatter response in the pass band or more often some
combination of these design parameters. Thus, when we start
trimming away some of the coefficients of a filter we can only
4 expect that some or all of these basic parameters may suffer. In
addition, if the trimming is done in a random or nonlinear fashion
we can expect a certain amount of randomness or nonlinearity to
be introduced into these filter parameters as well.

During a normal filter design, one of the major trade—offs
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v, g
encountered is the cost of increased complexity caused by a longer a
filter with the desired stop band attenuation and transition band N
rolloff. The importance of the flatness of the pass band and stop :Eé
band are normally accounted for by the choice of the filter "";
design—Butterworth, Chebyshev, Elliptical, etc. —and to a smaller ;‘
extent by the length of the filter. Usually the driving factor in a _‘,’Q
filter design will be that the attenuation in the stop band meet f
some minimum requirement. This is balanced against the cost E"
(complexity/length) of the filter. E
An interesting effect occurs, however, when we start talking
about an a-trimmed linear filter with a set of FIR coefficients. An ?,:'?
attenuation limit is reached quite rapidly even though the filter is y
made longer! By comparing the graphs of BPF2500s for the lengths b
of 31 and 63 elements, Figures 3 and 4, and the graphs of
HPF3500 for these same lengths, Figures 5 and 6, one can see that ":::
the attenuation does not get any better for the longer filter. In 9
fact, if the graphs were superimposed it could be seen that the E
responses are nearly identical. This is especially true for the T=2 -E |
graphs. The attenuation is the same for all frequencies with only .,
some minor discrepancies in the rolloff region. As T increases this :},
variation in the transition band increases somewhat. The rolloff is El‘
slightly steeper for the longer filters as would be expected. In
addition, the first hump is slightly narrower, a little higher, and ;:
rises more sharply for the longer filter. These facts all seem to be fq-
in line with what we would expect for a larger linear filter. ':
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In order to complete the comparisons, note the maximum
attenuations for each of the filters. For the BPF the maximum
attenuation of the trimmed filters near 0 and .5 normalized
frequency is about -32 to —33dB. This is for both the 31 element
filter and the 63 element filter. Now compare this to the
attenuation obtained by the actual linear filters. Figure 7 shows
that the 31 element linear BPF has an attenuation of —-47dB while
Figure 8 shows that the 63 element filter has an attenuation of
-84dB, an additional 37dB of attenuation! Yet the trimmed filters
have nearly identical attenuation. A similar case exists for the HPF
example. The linear filters of length 31 and 63 have stop band
attenuation figures of -56dB and -102dB, respectively. A difference
of 46dB! Yet the maximumn attenuation of either of these filters
when trimmed is only about —-28dB. This limiting effect was seen
in all of the examples in the simulation.

This effect is probably most closely related to one of the effects
discussed at the beginning of this section. In the a-trimming
process, the data elements that most often get trimmed are those
that are modified by the largest linear coefficients. These
coefficients are responsible for a large portion of the filter’s overall
shape. When the length of the filter is increased, the additional
elements are typically very small and have a very fine effect.
They only become significant when combined with the larger
coefficients of the filter. Taking out the larger coefficients probably
nullifies most of the subtle effect the smaller coefficients have in

lowering the stop band.
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EFFECTS OF DESIGNED ROLLOFF

If you were watching closely in the previous section you may
have noticed something strange that was not emphasized. In the
filter examples given the linear band pass filters had attenuations

o IR N g .l.;
o

»
-

of —47dB and -84dB for 31 and 63 elements, respectively. Likewise s

the high pass filters had corresponding attenuations of -56dB and 2
—102dB in the stop band. Yet, when 2 elements were trimmed A
from the BPF the attenuation only dropped to »-33dB, while the b
same amount of trimming off the HPF caused the attenuation to (

rise all the way to s—28dB. The BPF suffered less degradation than

2 IR ©

the HPF! This seems counter—intuitive.

Taking a closer look by comparing the two 31 element filters '.g
we see that the attenuation of the BPF dropped from -47dB to o
roughly —-33dB when two elements were trimmed. While the HPF, E;
whose better original attenuation of -56dB, rose to about —28dB
when the same trimming was done. Obviously there is some effect
other than filter length involved here. 3

It turns out that the answer is in the coefficients themselves, §
or at least in their design. The main difference between the high "

- pass and the band pass filter of the previous section is the width of E
the transition band. The BPF was designed with a steeper rolloff W)
than the HPF. It may seem improbable that this is indeed the o
reason for the discrepancy in the stop band attenuation since the ::{‘
filters pass different frequency bands, so the following example is
offered. o

A second band pass filter was designed with the same, more ;

\ X “Q._‘.l.,‘!l!.; ‘.g'.l&q't! A.\l.o .Q.C. 'ﬁ-‘(‘, M .l. e .0‘ A
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gentle rolloff as the HPF recently discussed. The frequency response
of the 31 element filter is shown in Figure 9. Note that the linear
filter has a -56dB attenuation in the stop band, the same as the
HPF of the previous section. In fact, in other filter designs it did
not matter to where the actual pass band was moved, if the
rolloff was kept at a width of 0.1 (normalized frequency) and the
pass band was kept reasonably wide, then the attenuation in the
stop band was very nearly —-56dB for all examples. Now note in
Figure 10 that the attenuation in the stop band does not go below
about -22dB when 2 elements are trimmed. Yet this filter passes
nearly the same frequency band as the previously discussed BPF
whose attenuation went from -47dB to -33dB when 2 elements
were trimmed.

It appears then that the coefficients for an FIR linear filter are
more resistant to a—-trimming when the filter is designed with a
steeper rolloff, or at least the effect of a-trimming is dependent on
the characteristics of the coefficients in some way. Somehow in
these two examples the coefficients of the filter with the steep
rolloff were more resistant to a—trimming than the other two
shallower filters. (We can say this for a-trimming in general
t;ecause, although it is hard to deterrhine what is a good measure
of the attenuation in the stop band for trimming greater than two
elements, it is visually obvious that the attenuation for T=4 and
T=6 was better for the steep rolloff BPF than for either of the
other two filters to which it was compared.)

However, the previous two examples both used the same
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]

example of a steep rolloff filter for comparison. It could be just a L
fluke of the particular coefficients of that filter that the ..:
a—trimming happened to have less of an effect on it. So another ::
steep rolloff filter was designed. ;
This time it was a LPF having a rolloff similar to the steep 1
BPF, but a much narrower pass band. In this case the rolloff was ‘
0.04 normalized frequency with a pass band of a mere 0.01. The .
designed attenuation in the stop band was -28dB for the 31 &
element filter and —52dB for the 63 element filter. The results for ‘
this filter were even better than for the steep BPF as can be seen
in Figures 11 and 12. The deviation for the 31 element filter is 3‘;
only 1 or 2dB for each successive pair of elements trimmed and ::

the deviation for the 63 element filter reaches the same levels only
taking a part of the stop band to reach that point. \
SYMMETRY PROPERTIES 3

A somewhat unexpected property of the a—trimming process

7
cd

was the high degree of symmetry it maintained. This symmetry

5
came in two important forms. First, the graphs of each of the E:’-
band pass filters in the previous section showed that the transfer Y
functions maintained the original band pass filter’s symmetry ;
about the pass band. The attenuation was symmetric in each of g,
the two stop bands. €
This situation was not necessarily expected. It’s existence shows ’::
that the a-trimming process does not have any frequency ‘
selectivity. The trimming in the a-TL filter does not modify the '
set of linear filter coefficients as does the a-trimmed mean filter. 3
i



37

MERTaN =L 34 RESPOI-

Figure 11 : o-TL LPF300 L31 Transfer Functions plus [deal

Frequency Response

. > I :
.l"! -I' -ui‘l .J « ‘, .l...i L N .. "'., 3 l‘. .I.‘! .0 . .'q“ ,. ..‘ ( : ! .I. & » (\ 'l~

e 50T T

o

b

!

Z

A



38
MEDIAN XL 63 RESPIX.:
10
0.
-104
-208-
-39 --=- IDEAL Cum
-40- | ~ S T e
E 5. ‘ N - "‘J' Iu'! l‘ ‘. 8 A o T“
-50- AN A £ Gy R .
.'-4 lu‘ {. '\ “ “ [ B ” ' .i-- \ T=2
g ’bu—n m ‘! v - " " " .' .. l' .‘- . PR : ) P .
oL vhea Pyl SEIRNY
- l ¥ - 5 L S
70 I WL fy
] ¢ il b
88 ! 1
-9 T T T T T T 1
8.00¢ £.059 £.132 ). 1"F J.2EC E.23) E. 23D A IEE ), 4EE E. 433 €. 50

FREG W/ ZFi)

Figure 12 : o-TL LPF300 L63 Transfer Functions plus [deal
Frequency Response

' . e X ™ Y ‘ LR AT ‘ \* % T '5\ 3

~
!'\l" l.nl:‘ln ".l\ SOOI A SN, .l'q.l.i.. A N LN

‘ REL A - ~ e
G A R N R A R



o8, ] R W AT Y1 IR . - DR ! PR TN S » T AP AR RSB P - I - -
R B R R P N .. > -.,'1- RV NN B IR GG S I A NSO v 1, P, S

39

The a-TM filter's coefficients are modified depending on how many
elements are trimmed from the filter. No such modification occurs
in the a-TL filter. Thus, it could easily be expected that
a—-trimming a linear filter may affect its frequency properties. The
simulation shows that this is not the case, however.

Second, the other important symmetry property maintained
was one dealing with similar filters. The LPF and HPF transfer
functions shown in Figures 13 and 14, respectively, show how the
a-trimming process maintains symmetry across the frequency
spectrum. As one can see in Table 1, the coefficients of each of
the filters have the same magnitudes. They only differ in sign.
One might expect that the the filters would be trimmed
differently, since the largest positive and negative elements are
trimmed in the a-trimming process, causing different transfer

functions.

Table 1: LPF1500 L9 and HPF1500 L9 Coefficients

LPF1500 L9 HPF3500 L9

~0.04739 = h(1) = h(9) = ~0.04739
0.05110 = h(2) = h(8) = ~0.05110
0.15307 = h(3) = h(7) = 0.15307
0.25926 = h(4) = h(6) = ~0.25926
0.30437 =  h(B) = 0.30437

The explanation for this symmetry seems fairly
straightforward. The noise used to calculate the transfer functions

-----
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is zero mean and Gaussian and is, therefore, equally likely to be ..:
negative as positive. Thus, on the average, the effects of a .;
difference in signs of the coefficients will not be a factor in the .;
long run and only be a factor in determining the frequencies o
passed in any given interval, high frequencies or low frequencies E.

depending on the filter. An interesting test would be to give the

"

noise a dc bias so that every data point was the same sign. The
trimming symmetry that these two filters exhibit may suffer
under these input conditions.
FILTER GAIN

A troubling problem with the a-TL filter is the uncontrolled

gain of the system. The gain calculation outlined in Section III does

PP G R

a good job of estimating the gain of an a-TL filter only if the 'E '\
linear filter is a low pass filter. Experimentally, the gain factor "‘
correction was very good for the LPF case. However, it was totally ’
unpredictable for any filter not passing dc. This gain problem -
showed up in the transfer functions as a spike at 0 Hz. ( This spike -‘~.
was not evident when the median was used to select the transfer
function, only the mean. The distribution of values at the dc point S;-
has a much larger deviation than at any other frequency for all of ‘3:

[ 4

the filters in the simulation. See Appendix A for more details.)

l.
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Interestingly enough, though, an unsuspected consistency was
found while attempting to calculate the error to evaluate the
performance of an a—trimmed BPF in rejecting outliers. It was

necessary too correct the gain problemn in order to calculate the
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MSE between an ideal signal and the noise corrupted signal filtered
by the a-TL filter. So the output was modified by a minimum
MSE calculation. This minimization led to the calculation of the
required normalization factor. Surprisingly, the normalization
factor (same as the gain factor g) for a given a-TL filter remained
fairly constant regardless of the noise on the input signal. The
normalization factors for two of the band pass filters are given in
Figures 15 and 16. The values in these figures were obtained by
filtering the ideal signal—a sinusoid in the pass band of the

.. filter—with the a~TL BPF and then calculating the required

¥ N

of,

(%

normalization factor to minimize the MSE between the filter output
and ideal input.
The normalization factors calculated when there was noise on

the input signals were consistently smaller than the values in the

Gain Factor for BPF2500s

= Gein Facter for
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Figure 15 : Gain Factor for a-TL BPF2500s
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Gain Factor for BPF2500

= Gein Factor for
BPF2500

- 8PF25001L9
4 BPF2500 L1S
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00 —p— > *
0 2 4 6 8
Number Trimmed

Figure 16 : Gain Factor for a-TL BPF2500

figures, but right in the same neighborhood. This would be
expected since the noise on the signal would almost certainly add
slightly to the MSE between the ideal and the corrupted signal.
OVERALL FREQUENCY PERFORMANCE

One of the items that has not been stressed very much is the
actual measurement of the frequency performance in the stop
band of the a-TL filters. Where a reference has been made to a
value for attenuation in the stop band of an a-TL filter, the
measurement was made at the edge of the filter response where
the attenuation had reached its best point. An important
measurement, though, is how good the attenuation is at the first
sidelobe. For the original set of linear FIR filters these two

measurements were the same since the attenuation was uniform

B, gt o o
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across the stop band.
This is far from the case when measuring the attenuation in
the first sidelobe of an a-TL filter. As can be seen in Figure 17

this performance measure leads to some very poor results.

BPF2500s 1st Sidelobe

oN

Qa3 oo —

Number Trimmed

Figure 17 : First Sidelobe Level of BPF2500s

This figure shows that the most serious loss of attenuation
occurs for the first two elements trimmed. After that the loss
appears to be fairly linear and not nearly so severe. The first
sidelobe is most affected in the long filter lengths. Since the
sidelobes become more numerous and skinnier, the loss of
attenuation shows up more clearly for the very narrow first
sidelobes of the long filters.

vy -, e, v, w WY L P LMY pw AT SRR PR S S RN T N LAY - AL - LR
LAY S o WYY Aves L Y SR TNl A" e » > -\




%6 o

This makes it difficult to say exactly how bad the degradation

of frequency performance is for the a—TL filter. The attenuation is E !

- much better than the level at this first sidelobe for the majority
of the stop band. Yet a significant amount of energy is passed

through the filter in this first sidelobe that would be attenuated in :.:;’
the corresponding linear filter. About all that can be said for sure .:3'::
is that the frequency response of the linear filter suffers quite a g
bit when the filter is a-trimmed. The longer the linear filter and :
better the stop band attenuation, the more a—-trimming degrades X
the performance. :
B. OUTLIER RESISTANCE 3§

The property of outlier resistance was one of the major design

considerations in all of the filter designs discussed in Section 1I. One
would therefore expect, for the low pass filter case embodied in all

of those designs, that adequate noise smoothing with impulse Q-
rejection has been achieved with some degree of success. It seems :;
unlikely that a new filter design which has outlier resistance as
only half of the major filter objectives—the a~TL filter—would be '-;
able to compete with any of the previously mentxoned filters. On :"
the other hand, there is nothing to compare a band pass or high '
pass a~TL filter to except the corresponding linear filter. In this :‘
case one would hope that the a-TL filter could outperform the ;';
linear filter in rejecting impulses.

STy

7

-
-

’
g . - - DR RPN PN ML e I ) » ST AR o o Lo Cg oy L " o €t g
-"fn'". AT i A A B N N O I T B TR G £ G G Tl S D R G 7 R o S I T, Rt



|

TSRy

rEr
- -

S|
e

e

VISUAL EVALUATION
In visually inspecting the performance of the a-TL filter,

however, it is not practical to look at a high pass or even band
pass signal. No meaningful information is readily derived from

o B2 04\"5\.

(&
trying to do so. In order to determine the effectiveness of the a-TL ?_'::
filter in rejecting impulses by a visual inspection it is necessary to f?.
limit the investigation to the LPF case. This approach also allows a h_
comparison of the a-TL filter to several of the other filter designs :_Eg
discussed in Section Il. Specifically, a comparison of the low pass b '
a-TL filter will be made to the a-TM filter (and the mean and v
median filters, noting that these are special cases of the a-TM h‘f
filter having 0 and N-1 elements trimmed, respectively). 9

The input signal that best showed the filters’ performance was *
a signal similar to the one used by Lee and Kassam in one of their ;
papers on order statistic filters.! The signal has several edges and ::
several monotone regions. The signal is shown in Figure 18, before «
and after it is corrupted by white Gaussian noise, 02 = 0.2. Figure :;
19 shows the same signal corrupted by white Laplacian noise, ES

o2 = 0.5. This signal is known as signal 1 (SIG1) and the two
corrupted signals are known as SIG1G (Gaussian) and SIG1l &2
(impulsive). A third version of this signal, SIG1IG, is SIG1l plus g‘
white Gaussian noise, 62 = 0.1, and is shown in Figure 20. -

The filters used in the simulation for the visual evaluation were
LPF300 L9 and LPF1500 L9. The 9 element filters were chosen o
because they were short compared to the features of the signal.
The LPF300 signal is particularly interesting because it was
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Figure 19 : SIG1! - signal 1 + noise ~L(0,0.5)

PNV YR,

2T L




MAGNITUDE

-4.0-3.0 -2.0 -1.0 0.0

SIG1+GAUSS+IMPULSE

1.0 2.0 3.0 4.0

JIILJLIIJIJI_ILJLIIJI'lJlJJ__JlJlllllllJlllJ

m'rm']flll[l'mll[rlm
0 10 20 30 40 S0 60 70 80 SO 100

SAMPLE (TIME)

Figure 20 : SIG1IG - SIG1[ + noise ~N(0,0.1)
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designed to have a transfer function very similar to that of a o
mean filter, having a similar pass band width and rolloff. :?"i
The results of SIG1G being filtered by a mean and median filter ng

of length 9 and a-TM 9Té are shown in Figures 21, 22 and 23, r
respectively. As expected, the a-TM is a very good compromise :
between the noise smoothing of the mean filter and the edge ?‘
preservation of the median filter. Figure 24 shows that the LPF300 4
L9 filter, even though it has a similar transfer function to the ~.
mean filter, does not do as good a job smoothing the Gaussian .‘\:‘.
noise, but still introduces the same smearing of edges. This is due r
to the nearly constant coefficients of the filter. However, if the ';
LPF300 L9 filter is a-trimmed 6 elements, the results are very :'S‘:;f
comparable to the a~-TM filter of the same length and trimming. (..
The a-TL filter fails to smooth the noise as well near the end of :“’
the sinusoidal section, but matches the flat pulse much better as .
shown in Figure 25. The LPF1500 L9 filter lets through too much
of the noise, even when a-trimmed 6 elements as shown in 'é;
Figures 26 and 27, respectively. ':g
Of a more primary interest is how these filters perform in the .
presence of impulsive noise. The mean, a-TM and median filters | :;".:;
perform as expected in Figures 28, 29 and 30, respectively. The :.:i'::
important spots to watch in all of these figures are the doublet ,‘;
type impulses in the first flat region, the single and double width ::"E

impulses at the top of the sinusoid, the pair of opposite pulses in \
the middle of the sinusoid region, the doublet type impulses at the
falling edge of the step and the string of five impulses on the final

: - - . \ \ . - Ry PRI T Il U AP SN IR, W R SR e e R I Y
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Figure 21 : SIG1G Filtered by Mean 9 o
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Figure 26 : SIG1G Filtered by LPF1500 L9
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ramp. Note in each of the three preceding figures, the filters dealt
with all of the impuises fairly well except the impulses at the top
of the sinusoid and those on the final ramp.

Amazingly, the LPF300 L9 filter takes care of the effects of all
of the impulses quite well as shown in Figure 31. However, this
filter still lets through too much small level noise and introduces
quite a bit of distortion to the signal. It can be seen in Figure 32
that when this filter is a-trimmed 6 elements the distortion and
low level noise are taken care of, but the pair of impulses on the
sinusoid have quite an effect. The real power of a—-trimming is
seen on the LPF1%00 L9. In Figures 33 and 34 one can see 4
that this linear filter still passes too much high frequency noise, %
but the distortion is smaller than that of LPF300 due to the larger >
pass band being better able to follow the edges in the signal. Also, 5"
trimming six elements has some degree of success against the o
outliers. In fact, this is the only filter that can be said to have
taken out the majority of the effect of the pair of impulses on the
top of the sinusoid.

Although these graphs give a feeling of what can be expected
from an a-TL filter compared to one of the more traditional
filters, it is still difficult to see what is actually happening in the
a-TL filter. One example that delivered some really tangible visual
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results is shown in Figure 35. In this graph the input signal is
SIG11G. The two different outputs plotted here are those for a
median filter of length 9 and LPF300 L9 a-trimmed eight
elements, in effect an a-TL median filter. At first one may think
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that these two filters should produce the same output since they
are both nine element filters with eight elements trimmed.
However, one must remember that the a-TL filter weights the
input by the set of linear coefficients before the values are ordered
and trimmed. So even though an element in the input window of
an a-TL filter is the largest it is not necessarily going to be
trimmed. It is only trimmed if its value times its weighting
coefficient are large enough to force it to the ends of the window
after sorting. As can be seen in the figure, the two graphs give
the same outputs in some areas and are significantly different in
others. The most notable feature is that the two filters produce
nearly identical outputs in all areas of the graph where the signal
is changing most rapidly: near each of the edges and along the
center of the sinusoid. The areas where the outputs deviate the
most are, in general, the flattest parts of the signal.

This suggests that something could possibly be done to improve
the performance of the a-TL filter or at least suggests what the
real differences are between the a-TL and a-TM filters. The reason
for the poor performance in the flat areas of the signal is most
likely due to the fact that the linear filter in this case has a finite
band pass. We know that the mean filter is optimum in smoothing
Gaussian noise, but the linear LPF must pass a certain band of
frequencies. Note that the oscillations in these flat areas are not
nearly so great as they were in the original signal. The high
frequency noise has been filtered out, but some low frequency

noise remains. The steep areas of the plot are changing fast enough
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that they are at the edge of the filter band, at least, thus the
a-TL filter can do a good job of smoothing noise that has any N
higher frequency components in these relatively steep areas.
NMSE COMPARISON

A more effective or at least a more informative method of
evaluating the performance of the a-TL filter in resisting outliers is
with an error analysis between the filtered output signals and the
original “ideal” signals. This discussion will concentrate on three
different ideal signals each corrupted by either Gaussian noise,
Laplacian (impulsive) noise, or an additive combination of both
types of noise. The first signal is a low frequency signal with edges
in it. It is the signal described above as SIG1 Following the same
notation, a second signal, SI1G2, is a sinuscidal signal with a
frequency in the center of the pass band for two different band
pass signals. SIG3 is a similar signal with a frequency that will
place it in the pass band of both of the LP filters previously
discussed. These three signals will allow several different
comparisons and evaluations. Signails 1 and 3 will allow different
filters to be compared in their performance with respect to sgnals
that have edges versus slowly varying signals These two sgnals
also give two examples for comparing the a;TL fiker to the a-TM
filter. Finally, signals 2 and 3 will show the relationship between
the low pass and band pass cases of the a—TL filter
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For every case tested two errors were measured normalized
mean square error (NMSE) and normalized average error (NAE)

These errors were calculated in the following manner
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. NMSE = (4/N) 2 [ly@m)l - ()i, n=12,...N (9
1 2 i(n)P

where y(n) is the filter output and i(n) is the ideal signal and

NAE = (1/N) Z ly(n) - i(n), n=1,2,...,N. (10)
N 2 li(n)l

Experimentally, as evidenced by Figures 36 and 37, NAE
followed the same pattern as NMSE almost without exception. For

LA A B

ths reason NMSE will be the only error discussed since it is the
more common measure of error.

As evidenced by these two graphs, the a-TM filter performs
better and better against Gaussian noise on a signal with edges in
it a8 the number of elements trimmed is increased. This is largely

A due to the reduction of distortion on the edges by the reduced
number of elements in the averaging. This effect is so acute that
the median filter has the minimum NMSE for each filter length.

Thae conclusion is backed up by looking at the NMSE plot of this
seme sct of filters when the input was the smooth signal 3
corrur“ed by Gaussian noise as shown in Figure 38.

Nete 1n this graph that the vertical axis is only a small portion
ot that of the previnus one. Note also that trimming has no
sdventageous effect. In fact, the error between filter output and
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Figure 36 : SIG1G Filtered by a~TM - NAE
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Figure 37 : SIG1G Filtered by a-TM -~ NMSE
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the ideal signal actually increases somewhat due to the decreased -
number of elements used to smooth the noise and the inferior A
ability of the median filter to smooth Gaussian noise. j
X
.”
alpha-TM on Signal 3g - N
NMSE = 0.375 o
= sighe-TM on Signel b’
39 - NMSE = 0.375 o
4 L7 st o
® L9 st .
€ (11 esE ‘:
+ 13 NSE 83
4+ 115 N1SE N
Number Trimmed %
Figure 38 : SIG3G Filtered by a-TM - NMSE 5
4
The questions to ask now are 1) can the a-TL filters perform o
as well in smoothing Gaussian noise as the a-TM; and 2) how do o
the two compare in the impulsive noise case? Figures 39 and 40 X
show some interesting results. In the case of SIG1G the LPF300 3t
a-TL filters (hollow point markers) perform like the a-TM filters N
X
shown in Figures 36 and 37. The distortion introduced by the e
linear filters by themselves is gradually reduced by more and more .92\.
trimming. Whereas the LPF1500 filters (solid point markers) are T

able to follow the edges of the signal 1 fairly well initially due to »;
o




73 o

alpha-TL on Signal 1g -
NMSE = 0.211 X

025 '

0.20 = alpha-TL on Signe) 1g
- NMSE = 0.211 :.‘
M 0.15 € LPF.03 L9 NMSE :":“
S 0.10 & LPF.15 L9 NMSE o
E 4 LPF.03 L1S NMSE

0.05 4 LPF.1S L1S NMSE

-’o- 3

000+ ‘ ' -t
0 2 4 6
Number Trimmed

Koo

Figure 39 : SIG1G Filtered by a~TL - NMSE 5
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3
the larger pass band, but trimming causes a degradation in noise "
smoothing ability and thus an increase in the NMSE. For the :
smooth SIG3G the results are turned in favor of the LPF300 filters’ :
ability to block out more noise than the wider pass band of the -
LPF1500 filters. Indeed, the LPF300 filters perform nearly as well E
as the a-TM filters. It is interesting to note the unexpected ‘
decrease in error for a~TL LPF300 L9 in going from T=2 to T=4 r
and to a lesser extent the same thing happening to LPF300 L15 in :
Figure 40. Perhaps some sort of resonance is touched in the filter
to cause this. j
The a-TM filter and the a-TL filter perform nearly in the same E
manner in the presence of impulsive noise on signal 1 as in the ‘:'-
presence of Gaussian noise. This is most likely due to the number N
of edges in signal 1. The filters that can best deal with the edges 3
have the lowest NMSE values. The same characteristics which )
allow these filters to handle the edges in the signal are also the .
same characteristics that help the filters deal with outliers. An .
interesting point to note here is that LPF300 filters have the $
desired performance benefits derived from trimming elements off of 4
the filter (NMSE goes down as T goes up), while the LPF1500 3
filters have a better initial starting point in both the impulsive and ,3?;
Gaussian noise cases. It would be interesting to design a filter with 3
s

the steep rolloff of LPF300 having the pass band of LPF1500 to see "
if a better performing a-TL filter could be obtained. 3
The results for the performance of all of the filters on signal 3

o¢
¢
in the presence of impulsive noise are somewhat surprising. The ?!:‘
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initial NMSE between SIG3! and the ideal signal before filtering is
0.504, while for SIG3G the NMSE was only 0.375. Yet, nearly all
of the filters more effectively suppressed the impulsive noise than
the Gaussian noise as can be seen when Figures 41 and 42 are
compared to the figures previously shown for SIG1G. Note the R
different scales on the vertical axes. Notice also in this case that, ;
in the presence of impulsive noise, trimming only has a beneficial &
effect for filters of short length and that the median is not the ‘
best filter to use on this smooth signal. by
The error calculations for all of the filters were predictable for \
the case of the two signals corrupted by Gaussian and impulsive
noise at the same time. Superposition of performance in the two

N P

%

;o‘
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cases seemed to hold very well. &
-
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Figure 41 : SIG3I Filtered by a-TM - NMSE ‘t‘
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alpha-TL on Signel 3t -
NMSE = 0.504
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Figure 42 : SIG3! Filtered by a-TL — NMSE

The really interesting example in these error calculations is the
case of signal 2 and the band pass filters. As was pointed out
earlier, the ideal signal is just a sinusoid whose frequency lies in
the pass band of the two band pass filters discussed in part A. As
one can see in Figure 43 the linear filter performs an adequate job
of smoothing Gaussian noise. Trimming elements off of either filter
does not have a very big or very consistent effect. In general,
a-trimming tends to help the shorter filters and harm the longer
ones. This is probably due to the trimming introducing more

distortion in the longer filters since the signal changes are short
compared to the lengths of the longer filters.
However, when the signal is corrupted with impulsive noise,

a-trimming can have a great effect as evidenced in Figure 44. For
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Figure 43 : SIG2G Filtered by a-TL - NMSE ':E
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this signal, the kind of affect the a-TL filter was supposed to have
is finally realized. In this instance, the choice of an a-trimmed
linear filter clearly has an advantage over its corresponding linear
filter, especially for only two or four elements being trimmed.

As one might expect, when signal 2 is corrupted by both Gaussian
and impulsive noise it maintains the basic performance shown in
the previous figure. The a~-trimming helps reject the impulses and
thereby decreases the NMSE without sacrificing very much in the
way of Gaussian noise suppression.
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V1. SUMMARY, FUTURE RESEARCH AND CONCLUSIONS
A. SUMMARY

The a-trimmed linear filter model came out of a natural
development of evolutionary filter designs. It is another step in the
process of trying to marry desirable traits from different families
of filters. It is noteworthy in that it is a first attempt at
combining the inherently nonlinear filter characteristic of outlier
resistance with the definitely linear filte:: characteristic of
frequency selectivity. A viable filter design having these two
primary characteristics could be extremely useful.

The model has a solid foundation under it. Like the mean and
median filters are a subset of the L filter, so are the L filter and
the a-trimmed linear filter special cases of the generalized order
statistic model outlined in Section IlI. As with any new design,
however, there are problems to be overcome. Indeterminate gain
for some of the filters and a serious degradation in frequency
_response characteristics for nearly all the examples considered here
are two of the major things that need to be investigated further if
the a-TL is to be a viable filter design. As this simulation showed,
too much performance is given up in the frequency response of the
linear filter for an amount of outlier resistance already achieved or
exceeded in other filter designs. There may be some specific |
applications where an ao-TL filter would be the best choice, but it

has not proven worthy as a general filter model, yet.



B. FUTURE RESEARCH

"
OPTIMIZING THE COEFFICIENTS N

Perhaps the most remarkable result of the entire simulation

was the appearance that some filters were affected less by the
a—-trimming process due to their having a steep rolloff design in the
transition band. This leads to the conclusion that some

_A;{{If(

characteristic of the linear filter coefficients can be exploited in
order to minimize the effects that a—-trimming has upon the filter.
No conclusive evidence was found in this simulation that actually
pinned down the characteristic or characteristics of the coefficients \
that seemed to be resistant to a—-trimming. An area for further
study could include a way to optimize the linear filter coefficients
so that this effect may be achieved. In addition, it may be
possible to adaptively modify the coefficients to optimize their
performance. N
IIR FILTERING

Just as an IIR filter of a certain length can easily outperform
an FIR filter of the same length, perhaps using a feedback loop in
the generalized order statistic filter model could improve the A,
frequency performance of the trimmed linear filter. Using '
feedback, the IIR linear filter can be designed to have a very steep
rolloff. It has already been shown that some relationship exists s,
between the steepness of the designed rolloff and the immunity of
a filter to a-trimming. It is possible that an [IR filter may prove

to be more resistant to the damaging effects of a-trimming. This
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N
may be the only fix necessary to adequately preserve enough stop _'
band attenuation during the trimming. ,‘~
The GOS filter model would have to be modified slightly in order -
to accommodate an IIR filter. A feedback loop on the time
weighting coefficients is obviously necessary in order to have an IIR ::i
filtering operation. 4-
MODIFIED TRIMMED LINEAR FILTER f"e
Looking at the suggested modification outlined above makes one
wonder what would happen if there were a feedback loop on the :,-;‘
rank weighting coefficients (bn's). This modification was made to i
the a-trimmed mean filter as outlined in Section II. The ’
modification was called the modified trimmed mean (MTM) filter 53:
and performed at least as well as the a-TM filter. ‘
Recall that the MTM filter provided a feedback loop that B
trimmed a number of elements from the active window based on a ,,.
range parameter q. The median, m;,, was selected from the » .
window and then all elements outside of the range [ my + q] were :-
trimmed off. Having the number of elements trimmed become h
dependent on the data allowed the filter to act as a median filter

when much of the data fell outside the range and like a mean
filter when there was very little deviation from the median. The .‘
range parameter was chosen based on a priors knowledge of the oy
noise. ‘-::
This scheme may prove particularly useful in the case of the K
trimmed linear filter. A modified trimmed linear (MTL) filter could '
outperform an a-TL filter for two reasons. As the simulation :
.
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showed, the major degradation in performance occurred when just

two elements were trimmed. If the signal were particularly noisy g:
with many impulses, the degradation would not be significantly “"
greater than for a lower fixed number of samples trimmed. ‘ !
However, the real payoff would occur during the times when no E
elements were trimmed. The MTL filter would allow for the E
possibility of not trimming any elements during portions of the _.
signal that did not require trimming. This would allow the full ‘
effect of the linear filter to be felt. \:
By choosing q such that an element was trimmed for only :
extreme cases, a filter may be developed that has some resistance ;
to outliers while maintaining a good frequency response. This case :?‘.
would be extremely interesting to pursue. It may give an insight "
to just how sensitive a linear filter is to trimming of any kind. ::
N4
C. CONCLUSIONS 3
.
As can be seen from the development of this model and hinted §

at by some of the results of the simulation, the trimmed lLinear ‘
filter holds some promise in iving up to i1ts expectations as a .-;
frequency selective filter with outher resistance properties Z‘

However, as the umulation also showed., the a-trimming process
can extract a fairly high price from the frequency performance of
a inear FIR hiter for a httle remstance to outhers

Thus 13 the major drawback of the a TL fHiter desgr The

section on outher reustance showed that this filter tesgr ould
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have a comparable degree of impulse rejection to the a~trimmed
mean filter in the low pass case. It at least did a fair job at
rejecting outliers in all of the cases considered. In addition the
results were surprisingly good for the BPF case. Trimming two or
four elements from the BPF designs in the simulation produced a
marked improvement in outlier resistance in the NMSE
calculations. Using a more sophisticated trimming scherme may give
even better rejection of impulses.

As the possibilities discussed in section B above show, there s
still hope for the a-TL filter. The simulation showed several
interesting relationships between some of the filter desgn
parameters and how the a-tnmmung process affected the
performnance of ti>e hinear filters Some of these mav prove uwetu
in helping to improve the performance of the a 7. ‘ilter *- *"e
point that it 13 a useful design for more thar a tew \pe t:
applcations
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This appendix contains some of the specific details used in
calculating the transfer functions for the simulation. Several
aspects of the model and computer system require some detailed
explanation for those readers interested in the actual development
and implementation of the model. The details described in this
appendix are 1) Gaussian and Laplacian random number
generation; 2) the histogram of calculated data and its
implications; 3) window selection for the input data; and 4) error
calculation to give an idea of confidence in the simulation.
RANDOM NUMBER GENERATION

The Pascal compiler used on the IBM 4341 system provided a
random number generation function that was uniformly
distributed. In the GOSF simulation it was necessary to generate
both Gaussian and Laplacian random variables. This was done using
a transformation of variables.

In order to transform variables from one distribution to
another it is necessary to set the probabilities of the desired
variable equal to those of the known variable as shown below for

the case of a known uniform rv and the desired Gaussian rv:

J dx = I exp{-y?/20%}dy/V2n0o (A1)

where u is a uniform rv and n is a Guassian rv with standard
deviation 0. However, we know from basic probability theory class

that the normal distribution cannot be solved in this form.
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Therefore, instead of solving the above equation we solve

r

a[ dx = | (y/o2)expi-y?/20%}dy (A2)

where u is the same uniform rv, but r is now a Rayleigh rv. This
equation can be manipulated and solved for r as a function of u.
The Rayleigh distribution is obtained by looking at a two
dimensional space that is Gaussian along x and y. The radial
variable of this space has a Rayleigh distribution and the angle
variable is uniformly distributed. Transforming the known
uniformly distributed variable into a Rayleigh and generating an
additional uniform rv will allow an indirect transformation to two
Gaussian random variables. The above equation is solved for r in
terms of u by substituting variables, integrating and solving. The
final equation becomes

r = =204In(1-u). (A3)

Then combining this Rayleigh rv with a uniformly distributed rv

we make the two independent Guassian random variables

x = r cos(8) (A4)
and y = r sin(6). (AS)
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The same approach is taken for the Laplacian (or double-

exponential) case, only equating the probabilities is directly b
solvable. The equation is ,
!

.
u d 5\, i
[ ax = | 220)expl-(VZo) W}y (A6) &

0 -d A
W,
where u is the uniform rv and d is a Laplacian rv with standard ,fi
deviation 0. This equation is solved by dividing the right integral &
into two parts to get rid of the absolute value of y, integrating ;'i
and solving. The result gives ;S
¥
v
d = -(o/V2)In(1-u). (A7) N

8
The results for either case can be quickly checked by noting '\
that as u—1 then r—0 and d—®. Likewise, as u approaches 0 _’
then r—0 and d—0. o
A test case was run for the Gaussian distribution. Twenty =
thousand uniform random variables were generated and were :'!:,’.
transformed to two sets of ten thousand Gaussian random f".':
variables. The results including the expected Gaussian percentages
are shown in Table Al. *S
8
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Table A1: Random Number Transformation :;
Cumulative Cumulative Cumulative '
#uni # ; # ; \
0.5 2077 3875 3882 0.3830 o
1.0 2000 6834 6881 0.6826 "
1.5 1948 8646 8655 0.8664
2.0 1905 9539 9526 0.9544 :
2.5 1930 9866 9860 0.9876 by
3.0 2080 9978 9968 0.9974 s
3.5 2038 9992 9994 0.9996 '
4.0 2044 9999 10000 0.9999 ’
4.5 1979 10000 10000 1.0000 ]
5.0 1999 10000 10000 1.0000 ;
Total 20000 !
5
WINDOW SELECTION
One of the most difficult problems to solve in setting up the
simulation was the method for calculating the transfer functions :~
for the a—-trimmed linear filter. As was explained in the Chapter
IV section on transfer functions, it is not a simple matter to find
the frequency response characteristics of a nonlinear filter that is ‘
designed to reject impulses on the input signal. An attempt to find \Y
LY
a simple deterministic method eluded all efforts. For this reason a ;
2
probabilistic measure was attempted. ";
. . A
The first problem encountered in using Gaussian noise as the !::;

filter input was one of leakage. The transfer functions were
adversely affected by noise near the ends of the data stream. This
problem was easily alleviated by windowing the input data.
Several different windows were tried. The Blackman window was

chosen based on its performance in calculating the transfer

' e 'f_:f.l'f'('." e J' (o A e v \CAON '_. ~,,¢ A \,. .\,‘_. e N « el . RS O },,-._-_
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function of a linear filter with none of the elements trimmed. By
visual inspection it was determined that by using the Blackman
window, given by

w(n) = 0.42 - 0.5cos(2nn/(N~1)) + 0.08cos(4nn/(N-1)) (A8)

for 0Sn<N-1, the linear filter frequency response was most closely
determined with the random input transfer function calculation. In
fact, as was discussed in Chapter IV, the NMSE would go to zero
when using just two trials of random data input. This is due to
the fact that, of the windows chosen, the Blackman window had
the best leakage characteristics. One needs to take into
consideration, however, that in the determination of the transfer
functions for the a-TL filters the relatively poor resolution
characteristics of the Blackman window function may adversely
affect the results, but cannot be avoided.
HISTOGRAM DISTRIBUTION

A somewhat more interesting problem came about in the actual
calculation of the transfer function. All of the data about transfer
functions presented in this thesis is based on 500 inputs of 256
samples of white Gaussian noise. Table Al in the previous section
showed how well the noise fit the Gaussian distribution and Figure
Al shows the autocorrelation of 2048 samples of this noise. The
correlation length indeed appears to be very near zero.

However, the first attempt to calculate the transfer function of

a particular filter from the 500 trials was done by averaging each
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FAUTOCORRELATION
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Figure Al : Autocorrelation of 2048 Gaussian Samples
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X
of the 500 transfer functions on a point by point basis. This
.|
procedure produced transfer functions which were unexpectedly .,'2;-
lf -:
“noisy” in nature. That is to say, even though the basic shape of E:

a given transfer function was believable, there were unexplained

bumps and spikes on top of the shape, all of which were positive. N
Correcting a small error in the FFT algorithm and fixing a problem 5.‘:
with the number of significant digits in the data generation t
program only alleviated a small amount of the apparent noise on j{'s
the basic transfer function shape. g:

An amount of uncertainty in the calculation was to be expected .
since the transfer functions were generated using a random input. "
Indeed, a small random deviation from a smooth shape was :
observed. However, on top of this fluctuation were unexplained s
spikes at various frequencies of the transfer function. Initially this .g’
was explained as a frequency selectivity of the a—trimming process 3 T
or perhaps some sort of resonance was introduced by the -
trimming. But, as was explained in Chapter V, the a-TL filter was é-; ‘
later found to not have any irregular- frequency responses. :‘ ;
The answer was found when histograms of transfer function \
values at given points of the function were generated. This showed :"x
that the distribution of values at each point was not very t}:
symmetric over much of the transfer function. Only in the r
frequencies of the pass band of the filter was the histogram ;
i

anywhere near symmetric. For most of the rest of the points the

histogram had the majority of the points grouped around some

relatively small value with an exponentially shaped fall off of

i ’ - o¥ B2 b V. IRY Tt S ¥ RN T e i S R UL R Rl SRR Rt N I S
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points away from this main hump. This led to the conclusion that
averaging the 500 values may not be the best way to show the
central tendency of all of the values at each point of the transfer
function. This conclusion was further supported by more
investigation into the histograms of the data which found some
extremely large, unexpected values.

Figure A2 shows a transfer function for a band pass filter
calculated early in the simulation (the function is symmetric about
0 Hz at sample 128) using point by point averaging. The arrows
point to individual values of the averaged transfer function and
identify which sample they are. One can see that the general
shape of this transfer function is the same as those for some of the
band pass filters in Chapter V with some impulsive—-type noise
added to it. Figures A3 through A6 show some representative
histograms of the data. Specifically the histograms are for points
91 though 94, respectively. The vertical scale shows number of
occurrences in a particular bin with the horizontal scale being ten
times the actual value of the transfer function at that point for
that trial. (note: the transfer function in Figure A2 was scaled by
a constant after the histograms were generated; therefore, the
average of all of the points of the histogram divided by ten will
not necessarily give the value of magnitude shown in the graph of
the transfer function.)

All of the histograms of the data in the stop bands are of this
same basic shape. They show that the data is skewed to the right.

Thus the central tendency of these distributions may be better
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described by the median rather than the mean. However, the real
evidence for this conclusion comes from noticing the trials that fall
into bin 100 in the data for samples 91, 92 and 93. The histogram
generation program limited the value of any individual trial to 10.
Any occurrence greater than 10 was put into bin 100. So the
actual values for these large occurrences were printed out. For the
single large occurrence in sample 91 the value was just 11.5.
Likewise, for the single occurrence in sample 93 the value was
13.1. However, for sample 92 there were two large occurrences.
One was only 11.5, but the second was 169.8, nearly 15 times
greater than the next largest value! Since there were only 500
trials to average over this one extraordinary trial was able to add
more than ten percent to the final averaged value at that
particular sample.

This was the main reason for using the median of the data at
each point to determine the “most likely” value for the transfer
function. Yet this brings up another interesting point; what kind
of certainty does this calculation provide? Is this simple approach
to finding the transfer function actually valid in this case? These
questions are discussed in the next section.

ERROR CALCULATION

The last two sections bring up some questions about the validity
of the transfer function calculations used in this thesis. The
windowing of the input data is necessary but forces a choice
between some leakage/resolution trade-offs of various windows. The

somewhat strange histograms of the calculated data along with the
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peppering of large outliers in this data introduces some additional
uncertainty into the measurement of the transfer functions of the
o-TL filters. The question is how far off are the measured transfer
functions?

The choice of the window to use on the input data was
straightforward. Of all the windows tried, the Blackman window
did the best job at reducing the leakage problems encountered in
the transfer function calculations. The different degrees of
resolution between the various windows made no real visible
difference under the criteria selected for choosing the best window.
As stated before, the criteria was to match the impulse response
frequency characteristics of a linear filter with the random input
transfer function calculation of the same untrimmed linear filter.
The Blackman window performed the best since it had the best
leakage characteristics of all the windows tested. Once the leakage
was reduced enough the transfer function matched almost
identically with only one trial of random input to the expected
frequency response of the linear filters. Therefore, it is assumed
that it would be difficult to obtain better results for the transfer
functions with respect to the window used.

There still may be some question in regard to the method of
“averaging” the transfer function trials, however. In order to
address this question some confidence intervals were found. During
the median selection it was a relatively simple manner to choose
other values at each point. Various “confidence intervals™ were

generated in this manner by selecting the 10 and 90 percent
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values to give an 80 percent confidence interval, for example. This
process gave a picture like that shown in Figure A7 for the skinny
band pass filter of 15 elements with 2 trimmed, BPF2500s 15T2.
The figure shows the ideal transfer function of the linear filter and
the transfer function of the filter with 2 elements trimmed
selected by the median of 500 trials of Guassian noise as the input.
The figure also shows 10 and 90 percent lines for the transfer
function with 2 elements trimmed. These are the 50th and 450th
largest values on a point by point basis of the ordered data from
the 500 individual trials. They are normalized by the same
constant as was calculated to normalize the median régponse to
0dB in the pass band. This gives a good idea of the range of values
this method of calculating the transfer functions covers. One can
see that if the 10 and 90 percent lines were properly normalized
they would come fairly close to being identical to the median line.
The only major difference is the wide variance at the dc point as
was discussed in Chapter V.

A similar picture is shown in Figure A8 for the same filter with
6 elements trimmed. The major difference between the two figures
is the expected increase in variance between the 10 and 90 percent
lines for the filter with 6 elements trimmed. One may also note
that it appears, by taking into account the possibility of getting
the response of the 10 percent line in the pass band and that of
the 90 percent line in the stop band, the frequency response for
the filter may be nearly flat! In practice, however, one finds that

this is not true. For an individual trial of Gaussian noise input the
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transfer function always maintained the same basic transfer s
function shape. The shape was simply much more “noisy” than S
the relatively smooth response given by the median of 500 trials. h:;
These confidence intervals merely show the magnitude of possible :'
variations within a transfer function for a single input. :
This explanation makes sense when one takes into account the E
nonlinearity of the a-TL filter. Just as for the simple median :
filter, it is not possible to predict what the exact frequency t{.
response of the filter will be for any arbitrary input. It can only o~
be said that the filter will have a general frequency response most : .
likely represented by the shape given by the median of 500 trials E'
of random input as shown in this thesis. This is just the same as E
saying that the median filter is a low pass operation. The median’s ”
exact frequency response cannot be determined without knowing 31
the input. It is only known in general that it will act in a low '
pass fashion with an approximate cutoff and somewhat variable 4
stop band performance. :
i
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In order to investigate the characteristics of the generalized
trimmed linear filter 1 developed a program that would implement
the various types of filters, a program to generate input signals to
filter, and some programs to compare performances of the various
filters on a set of input signals. The filter model program is simply
an implementation of the model described in the previous section.
All of the filters we are interested in using as comparisons are
subsets of this generalized model.

LANGUAGE SELECTION AND MODEL STRUCTURE

1 chose to write the program in Pascal instead of the perhaps
more obvious choice of the more computationally efficient FORTRAN
for two reasons. First was that the model structure seemed most
logically implemented using pointers with a linked list architecture.
FORTRAN does not have a pointer data type and, therefore, a
linked list structure would be difficult to implement. Second, 1 like
the stronger data type checking in Pascal or, rather, 1 dislike the
“weak typing” of FORTRAN. This was an important consideration
due to the moderate complexity of the model combined with the
slight degree of complexity of the pointer/linked list structure to be
implemented.

The reason I chose a linked list structure was that it most
efficiently allowed me to add and delete elements from the active
filter window and provided a relatively efficient sorting routine.
Another good choice might have been to use an array structure for
the windows, but | discarded this as less efficient in the two main

manipulations of the windows: adding and deleting elements and
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sorting. The efficiency of the sorting routine becomes important in Y
this model since the window must be re-sorted at each step 3
-
through the input signal. The insertion sort routine for a linked list ‘S‘-
structure takes the first value and calls it the smallest value. Each e
successive value to be sorted is inserted into the proper place in f;:
the sequence taking care to keep track of the smallest value.
PROGRAM SET DESCRIPTION i
The following is a brief description of each of the main i;
: ,.__
component programs used in the simulation as well as a discussion ﬁl‘;
as to how they were combined to forn the large, repetitive ]
program MEGAMEDIAN. The descriptions here are limited to the B
major Pascal programs. Many smaller usually machine dependent
programs were written to produce graphical outputs and to better
control the data file structure on the IBM 4341. Since these T,
programs would be of little use to the general programmer they :: )
L) "!
have been omitted here. g
oy
4
MAKEDATA: This program allows the user to generate an input e
sequence that is to be filtered. The input may have any "
combination of the following possible components: constant levels, i
'.\
ramps, steps or impulses, sinusoids or blocks of sinusoids, Gaussian ':
S
noise, or Laplacian noise. In addition, the user controls many of ~
the variables associated with each of these signal components ';
A5t
including location in the signal, magnitude, duration, and ‘;'-\‘.
variance, to name a few. The user also picks the number of ﬁ
%
samples in the signal. This value is stored as the first data point in :‘,‘ ;
~r
".'J'
IN'
N
'~
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the data file and is used by the filtering and Fourier transform

r
programs to properly handle the signal. In addition, once the E
desired signal has been generated the user may store it in one of :
two different files so that one may be used as a reference while "
the other is varied. The user also has the option to go back to 2
either of these two files in the future and add onto the existing :;
signal. :
~

%

FREQ: This program takes the discrete Fourier Transform (DFT) ':‘.;

of the input. The DFT is implemented with the decimation—in- q_
frequency fast Fourier transform (FFT) algorithm. The user is :*
prompted for which data file to use as the source for the Fourier :*‘
transform. The options are either of the two signal files created by ")
MAKEDATA, the output of the autocorrelation program, R,,, or ’
the output of the filter program. If the input signal is not :ZE
factorable by 2 then the remaining elements are padded with f.
zeros. After the FFT is taken, the real and imaginary parts are
converted to magnitude and phase since this simulation is ‘
primarily interested in the magnitude of the transform. The user '_
is then given the option to have the output converted to a log
scale. Finally, the user has several options to store the output in \.
different files for later manipulations and calculations. R
FILTER: This program obviously implements the filter model :
discussed in Chapter IIl. It is only important here to note the ~
inputs the user may make. The user controls the window size to ,:"’
R
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be used and then selects the type of filtering operation to perform.
Once this choice has been made the program prompts the user for

the necessary inputs to complete the filtering operation.

MSE: This program calculates not only the NMSE between two
inputs, but also the NAE. In addition the program generates two
output files to be graphed. The first merely combines the two
inputs into a single file so that both graphs may be plotted at the
same time. The second file is a graph of the difference signal
between the two inputs. These two graphs are useful not only for
simulation insights, but also for troubleshooting. The user has a
wide range of choices to select which data files to calculate the
errors between. The program can handle files stored in log

magnitude as well.

MEGAMEDIAN: This file creates transfer functions. MAKEDATA,
FREQ, and FILTER are all procedures in this very large program.
The main program loops through these three programs as well as a
procedure to caiculate the transfer function for each of the 500
trials in order to generate a transfer function for a particular

filter.

The listings for these five programs are Appendix D.
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SET OF LINEAR FILTERS USED
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Table C1 : Filter Coefficients for LPF300 L9 "

't

s,

b

Y

IS SE RSO NERSS LSRR TR AR RN SRR SES TS EEDEED SN I :
m

)

FIMITE IMFULSE RESFONEE (FIR:
LINEARFR FHASE DIGITAL FILTER DEZSIGH 5
REMEIZ EXCTHANGE &ALGIRITHM B~

FILTER LENGTH = ©
¥E¥1% IMPULSE RETFONSE ¥y r\
Hi 1: =  _Z23T2E2SOE+00 = M- % !
He ) =  L4Sa90250E-01 = H. & 2
Hi Ty o= L4BASSCRCE-L1 = M. T .

Hi 4; =  .S31781T0E-"" = H o o
Hi S = L S0TEBSNGE-OY = HiE S kY
-
Ny
"~
LOWER BAND EDGE f‘
UFFER BAND EDGE a

DESIRED VALUE
WEIGHTING N
DEVIATION . LATDS0OTTO0 o
DEVIATION IN DE =1I.S03906000  =T7.487307000 ;
”"
EXTREMA FREQUENCIES ot
L3000 L ED O L 1TITITT LDETTTTI LTT e ne s 4

2vxac

ER 2SS S SRS AR SR SR 2SR R AR N AR ERE N
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Table C2 : Filter Coefficients for LPF300 L15 &

i,

XERKKKKK KRR R R OROR KKK KR XXX R R R KKK KKK KRR XN KK %ﬁ

?

FINITE IMPULSE RESFONSE (FIR) R

LINEAR FHASE DIGITAL FILTER DESIGN r

REMEZ EXCHANGE ALGORITHM =

BANDPASS FILTER i

{

FILTER LENGTH = 15 ;4

¥Xk¥% IMPULSE RESFONSE XKXk% o

H( 1) = .11714120E+00 = H( 1S \

H( 2) =  .402B0SSOE-01 = H( 143) W

H( 3) = .4S621000E-01 = H( 1) o

H( 4) =  .S037008B0E-01 = H( 12) "

Ht ) =  .S4310600E-01 = H( 11) f

H( &) = fST72TO0TOE~-OL = H( 1) WE

H( 7) = .S89853I10E-01 = H( 9) '$

H( 8) = .S9S80910E-01 = H( 8) 0y

3

: BAND 1 BAND 2 e
LOWER BAND EDGE . 000GOO000 . 050000000

UFPER BAND EDGE . 010000000 . SO0000000 }

DESIRED VALUE 1. 000000000 « 000000000 foh

WEIGHT ING 1.S00000000 1. 000000000 .g

DEVIATION . 131174300 . 196761400 X

DEVIATION IN DE ~-17.643010000 =14.121190000 LN

EXTREMA FREQUENCIES H

. 0100000 . DSO0000 0851562 L1515£25 L2179687 2

.2882817 . 3585938 . 4289067 L S000000 @

K

XK XK KK KKK KKK KK KKK KKK 0K K XK KR KK R R R K X v

0

.(

Wy

..

o

-. \

e
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Y
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o
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H
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R N T TR T ~
X I . . e
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Table C3 : Filter Coefficients for LPF300 L31 2

K K R R K R R KK R R O K R R R R R R Rk Rk R K %
FINITE IMFULSE RESFONSE (FIR) !

LINEAR FHASE DIGITAL FILTER DESIGN .

FREMEZ EXCHANGE &_GORITHM ti

oy

EBANDFASS FILTER %

FILTER LENGTH = =1

¥ixxkx IMPULSE RESFONSE #okdik
; 1

H{ 13 = =—,11441&6T0E-01 = X
He 23 = L14994£T0E-01 = N
e,

HO T = C1AOIO0DSOE-GL = HI ; i
H( 4; = 16 SOOE-GL = H{ DED i
H( 5) = L19ESESSOE-01 = M 27 3
H( &) = L2TRABYTOE-OL = M 25) i,
H( 7) = LEBTIALINE-DL = MH{ 2% \
H( 8) =  .II685870E-01 = H( 24) o
O

( &) = = TFOROGE-CG1 = H( 23 Yy

\ >/ - LA RV L e H \ o mt “e
H{10) = LA4TTI8480E-01 = H( 223 s

] Lotk Y
HO 213

Hi11; = cATELO1GOE-O1

H({(12) = cT14SA090E-O1 = H{ =) ?_
H(1T) =  .S4ASS4BS0E-01 = H{ 19) o
H{14: = .S6882T00E-01 = H{ 12 : 1
H(15) = .S82858&0E-01 = H{ 17) o
Hi{1b) =  .S87401B0E-01 = Hi 16 -
Wy

BAaND o o

LOWER BAND ELGE LD
UFFER EBE&SND EDGE: .
DESIRED VALUE 1.6

WZIGHTING 1. COOONOG . 1. OOOOO000NG

DEVIATICN ) momasaTe -

DEVIATION IN DE -ZE.0893170000 -28. 083170000

EXTREMA FREQUENCIES :
« 000000 L 100000 » QSOO0OC00 L, DETHTILS 4
1261717 . 19972750 17452128 L Z2TTTA -

. 2960938 CITI2S00 CIHL45T CIHTATET

O
p
. Aee0186 e SOOOO0O0 h

AR R AR RO R R O R ok R Ak A ko sy

e P X0

EPrLFLy L LIS - »t AR - . - - ~ WAL .t R e .
e R M Y P L M) R R b o b R P o AR A A A O M R DR

D 5 T ¥ )
"‘-l".l’.‘ﬂ‘ » .!“?I... ', i& 02 X £
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Table C4 : Filter Coefficients for LPF300 L63

v ‘,
)

-

S

X ASA A
LR A E S L o)

-ar o BV
L ”

S A U ) AT PR L W A o " -~ P O )
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AT AR KR IR A A RN O] Sl 4 e s g'a d's f’ gt W) at . et as Ot

FINITE IMPULSE RESFONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN X
REMEZ EXCHANGE ALGORITHM !

BANDFASS FILTER Y
FILTER LENGTH = &3

XXkkx IMPULSE RESPONSE XXX%x Ny
H( 1) = -,1B686920E-02 = H( &3) N
H( 2) = -.15462900E-02 = H( &2) ’
H( 3) = =.21003040E-02 = H( 61) b
H( 4) = —,270696B80E-02 = H( 60) if
H( 5) = -.333821B0E-02 = H( 59) )
H( 6) = -,39567210E~-02 = H( 58) ’
H( 7) = =.45167690E-02 = H( 57) i
H( 8) = =.496558B0E-02 = H( %6) for
H( 9) = -.%2443800E-02 = H( S5)
H(10) = -.52912720E-02 = H( 54) by
H(11) = =,%50437710E-02 = H( 53) &
H(12) = =-.44416870E-02 = H( 52) \
H(13) = =,34307100E-02 = H( S1) VY.
H(14) = -,19657400E-02 = H( %O) o
H(1%5) = =-.13794770E-04 = H( 49)
H(16) =  .24416860E~02 = H( 48) ﬁ
H(17) =  .S54016280E-02 = H( 47) {
H(18) = .BB44S020E-02 = H( 46) e
H(19) =  .12731530E-01 = H( 45) 2
H(20) = .17000680E-01 = H( 44) ¥
H(21) = .21571820E-01 = H( 43)
H(22) = .26347610E-01 = H( 42) b
H(23) = .31215140E-01 = H( 41) \
H(24) =  .360%51430E-01 = H( 40) "
H(2%) = .40727130E-01 = H( 39) R
H(26) =  .4%110720E-01 = H( 38) b
H(27) =  .49074S20E-01 = H( 3I7) i
H(28) = .52S00080E-01 = H( 3&) ]
H(29) = .S5282BB0E-01 = H( 3%5) pe
H(30) = .S57335970E-01 = H( 34) >
H(Z1) = .SB594040E-01 = H( 33) g,
H(32) = .S59018030E-01 = H( 32 (v
BAND 1 BAND 2 !
LOWER BAND EDGE . 000000000 « 050000000 Y3
UPPER BAND EDGE . 010000000 . 500000000 ,
DESIRED VALUE 1. 000000000 . 000000000 3
WEIGHTING 1. 000000000 1. 000000000 v
DEVIATION . 002450794 . 002450794 G
DEVIATION IN DB -52.213810000 -52.213810000 Ay
b
EXTREMA FREQUENCIES 39
. 0067708 « 0100000 . 0500000 . 0536458 . 0630208 o
. 0755208 . 0890625 . 10364%8 . 1187499 . 1343751 >
. 1494794 . 1651046 . 1807298 . 1968759 . 2125011 -
. 2281263 . 2442724 . 2598973 . 2760428 . 2921884 -3
. 3078132 . 3239588 . 3401044 3557291 .3718747 b
. 3880203 . 4041659 .4197907 . 4359362 . 4520818 R
. 4677066 . 4838522 . 5000000 R
Rl
>
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Table C5 : Filter Coefficients for LPF1500 L9

KEXERXRKR KKK RN KARE R RN NIk ey ke by
FINITE IMFULSE RESFONSE (FIR:
LINEAR FHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGDORITHM
BANDFASE FILTER
FILTER LENGTH = 4

Px¥¥x IMPULSE RESFONSE %% i¥

Ht 1" = =,473783240E-01 = Ho =

H{ 27 = LS10PETONE-DL = H &

H( 2y = LASTOTISOE+OT = Hi EE

H{ 4) = L 2DF2THI0E+DD = H(

H{ &) =  ZOQTEFHOE+OD = Mo &

B&aMD 1 BAND 2
LOWER EBAND EDGE « OOOOOOO0O0 . 2 OOCOOO00
UFFER BAKND EDGE = 100000000 « SO00NOO00
DESIRED VALUE 1. 000000000 o OO0
WEIGHT ING 1. Q00000000 1. ZO0000000
DEVIATION « 136449700 . 1049461000
DEVIATION IN DB =17.300560000 =19.97F420000
EXTREMA FREQUENCIES
I atulsTalsTaln W 100000 . 2ODOO00 L DETTTTT s T T men

“€

ENFS 2SR SRR SRS SIS AR ER AR R AR A RS RIS

AN T

’-'.“.-\'f ARG

“ o A N 5T W .
Aol Y s e B

x 7

r

e v
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Table Cé : Filter Coefficients for LPF1500 L31

ARARRERRRRRR RN REL BRI R ALk Rk Rk ko vk Kbk kb ¥k
FINITE IMFULSE RESFONSE (FIR)
LINEAR FHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM
BANDFASS FILTER
FILTER LENGTH = =1

kidkk [MFRULLSE RESFONSE ¥k x¥
Ho =1

Hi 1 = . 18556240E—-0 =
Ht 2 = c16790450E-22 = He T
H{ T = —,134s7920E-02 = HY 19
Hi 4 = —.828685380E-02 = HY I28)
H¢ S = =-,76840400E-02 = HI 27
Hi &) = =_Z23B90070E-0T = H( 22&:
H( 7y = CITS110S0E-0L = HO 25
H( 8 = C214701S0E-01 = H( 24,
H: ) = «FA669B10E-0Z = HE 2T
Hedony = - 2250991 0E~-01 = H+ I
H(1iy = =,31T776640E-01 = H( 210
H¢12) = =,41209470E-01 = H« 20)
H{1Z) = . 29889B6CE-D]1 = H( 19
H{14) = c14616060E+00 = H 18)
H{1S) = « 2S564T90E+O0 = H( 17
H(lar = CSOOTOTTOEFOO = HO 140
Baidl 1 BAND
LOWEF BraNL EDGE NENIRIRINIS 1NN 1Y
UFFPER BAHD EDGE o D000
DESTRED VALUE 1. 000GOODO0
WEIGHTING 100, DOGOOO0OO0
DEVIRTION CODIBITIRS LO01IS2TLRS
LEVI-TION IH DE -S96. 244870000 =546, 3442700000
EXTREM~ FREDUENWCIES
» 0000  DATTEO0 L0718750 L NF2T 037 MRS Dela TN e
L DOGO00C . 2OT2917 22604814 C2H208TT L S@OT0ET
2104174 . 2806202 FESARSALT S § = o 4041687 CAZedanE
LALTTIIL o SO0

2SS SESFRESRNSRRR LRSS DSSRPRER SRR RR RS SRR RRR RS R

AR LI

m- P,
o LN s
R LL.L.A,.A.!..A'!..A\.-".A" '

P Y N
e

N
™

3

D)
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Table C7 : Filter Coefficients for LPF1500 L63 ol

-
-

s

PP E
. -

N YA

o -
e

" WL,

LS

=& 4

-5y

SR

._‘?

PR AR RN k.' .
L) .4 ' ¢ .49, ¥V

-

o

-

" AT M
AR NN h"."n RAKANENR N NI )
A

-

LARA

J A

-
" e

:-"' ARy

ERT R TR
Lot Xa ¢

N 5-: .t -P' " L "q [ ,'\ RN "- " \- ~! - \q-\' .
Sall 8 Jad el




RITE IMPULSE RESFOL

i FHQSF LIGYTaL . L.
7 EXCHANGE AL GORTTHM

BANDFHEE FILTER
FILTER LENGTH = &3

EXLER OIMPULSE RESFONSE ¥xx¥:

H( 1) = =.11497210E-04 = H{ &3y
Hi 2o o= LAOITFTRIVESOD = HU &2
H( 3) = "auiw4'4nEwu4 = Hi &1:
H{ 4) = CFATIOR’IIE-A = HiI 5
T . t,J BOSTIOE-G4 = M S

= L 13STZO0V0E-DT = Hio S5

= w.-h4¢u4”wE~. = 0 =T

= - . 3 = i FH

= . = i G

= .‘b4d4 GOE-0R = ML 40

= A EETGTenE-0D = HO T

= LOATES 1 0E- = M T

= - T IROEF0OE = 0
= - = Hi Do
= - = 4T
= : = H{ 48:
= LTOTBZTEOE-0Z = HO 4T
= . = Hi 3¢

=7anr8n5m03

= - T1ET = H{ 4%
= ~-.1x6 E-0) o= Hod4)
= -.1=~"”47HE-“1 = H{ 43
= ~.“”7”144uE—n. = H{
HiITY o= S1RQGTTIOE-G] = HA

H24 28124250501
H{Z=y = _1]444nauEmu1

non
e o

Hisar = -~ 291758 10E-01 = Hi
L TaReS 101 = by

LOWER DD c"'DE'BE
UFFER EAND EDGE
DESIFED QHIUE

WEIGHT ING v, 0
DE/TATION o DGO
DEVIATION IH DE -101.882200

EyTREM~ FREUENCIES

IR DRSS LT NS

L POLOST4 L2

. :'41 1464 el ¥ P-'c“., P e&E8TT04 . 28T
T1I0005 BAal-3) TATT 49
LIR01027 .4”““2“4 LAT1TE2E .4

LAHETATT LAKLTTN L SO0O0000

~ya

L o X 2B P 4 LW 2 ..’---- L T T LS ] . P = T I A S T T P [ )
A S A e T e e S R R R R

Al
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Table C8 : Filter Coefficients for BPF2500s L9

L2 22 2222222222202 222022 RRER RS eEeISR RS RSP e
FINITE IMFULSE RESFONSE (FIR}
LINEAR FHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM
BANDFAGS FILTER
FILTER LENGTH = )

¥¥%%% IMFULSE RESFONSE &%k

H{ 1; = CZ20TBR4E0DEH4OD0 = Hi 2
H({ 2 = =,.7066F860E-07 = H¢ =]
H{ Z) = =,14781F30E+D0 = H{ 7
H{ 4 = ~,2820G43850E-09 = H? &
H{ =) = AGIZ0TI0E+GO = H{  5)
BAND 1 BAND 2 BAND 3
LOWER EBAND EDGE » DOOODOOO0 » 20000000
UFFER BAND EDGE « 180000000 . 270000000
DES I R'ED VALUE . (:)t‘:)(:)t:)DC)C)D\'} 1. 000000000
WEIGHTING = 1. 000000000 1. 400000000
DEVIATION « 27I256500 125183200

DEVIATION IN DE -11.268580000 =-14.191140000

EXTREMA FRERUENCIES

» OO00O000 e J 100000 1800000 L DTOOGO0 L TR0

. 87?9

L2 S 2222282232220 TEELOFTERLT LTSRS ETEES ST
by - “ s LY ] . ACREN g 51 ST S R TS Ky Ny v ¥ A GRS SRS CETR
I I 3 R R NN D e 0 02 D O N A D N N 3 T A T L N e T N A O
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Table C9 : Filter Coefficients for BPF2500s L15

a8

FERRERKERAXKERK R AR AR

FILTER

w
A A

-

-.r.

AERERFEXRERRRARRARAR NSRS SR Rk v AR
FIMITE IMFULSE RESFONSE (FIFRD
LINEAM FHASE DISITAL FILTER DESIGH
REMEZ EXCHANGE ALGORITHM

EBANDRFASS FILTER

LENGTH = 15

FR%%d IMPULDLE REDFIREBE fxwkx
H( 1; = L 1TEETIIOE-GSG = MO 1)
HO 2y = =, 804674170201 = H{ 147
H( 2, = S 1BLIBOGE-GE = MO 1T
Hi 4; = ATBUETTOE-DG = H 132
H{ &) = CITFITEDOE-CGE = MO 11
H{ &; = —e 2011800000 = H{ 100
H{ 7)) = . "'“'-'4-':-'4""”‘E--"14 = M{ F}
R 8) = « 2IB4GTHVEFDO = HO @)

LOWER BAND EDGE
UFFER BANL EDGE
DESIRED VALUE
WEIGHTING
DEVIATION
LEVIATION IN DB

EATREM~ FREQUENCIES

«LSBEYT0E P AZLI053E . LD4TET T
o 270000 A INIs g W
ARAENERRERRER R KRR N AR RN AR AR E R AN R R ¥R R Ra R iy s

I _’.'. - - - - - - - - - - - -«
T, SR AT AT e M

- : EANT

YN YT YR

t

PR iy N N
AN Pl o A

PR Ay

-

N v
-

S, B84 5N

<
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| Table C10 : Filter Coefficients for BPF2500s L31

5 A NS Y2

2SS SRS 2202208022300 38 3033030830303 03¢0 08022203 253828220320

£

J e o R L
f‘N‘l‘"’l‘

R

AXERK IMPULSE :
Hi 1r o= = b @x

Hi 2 = = M ot

Hi Iy = = ki '

Hi 4) = = H{ s

H( S = = by 275 Riy

H( &) = = Hi{ 256} o
H( 7) = = M %) =
Hi{ B = = H{ 24 oY

H( §r = = M ' -

H(10) = 1 = Hi -~

H(i1) = 35 = M "

Hil2) = .1»;.1»5~E+~v = H{ s

H(1Z) = —=,19549110E-0% = H( I

Hilq) = -. 21 77'"791-‘&7"'-‘E+('-”-"3 = ﬂ:
MoiS; o= LEIDITEATC 3 "
Hilg: = PANmAZCGUE4OD = Hi & N

>

N

LOWER BAND EDGE . =
LUFFEFR BANL EDBE . ~
DESIRED ValUE 1. )

WEIGHTING 10, I
- . >
LDEVIATION L0814 iy
LEVIATION IN DR —47 ., 6423700 h

XTREMA FREGUERNCIES

IR ININT0 IV LTI 2S G0  DEITO0N0 o 5] . R
. 1800250 . 1500000 2300000 . . e
N -._Hh)(-)l.n" 3 . ALY, 8 1% =9 - :7‘?_": & - 3 P R tﬁ.
. 4651408 L BO0O000 3

RS ER S ST FP ST TI IS SIS TSRS ST SRR SR

PR
v’l’l

[d

e

RRRS

- T I LS ) N O [ TR R T X AR
'h‘t ‘:‘\“‘\.\,l‘.‘ LX) .\n W o f. "N N { 2 " I " f v ‘-.' N R P B ‘. »
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Table C11 : Filter Coefficients for BPF2500s L63

LA A A A A Y PO SR A
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Uh,
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R \'.l‘;',fo al‘a l’i'l“..l.

FILTER LENGTH

LOWER DAaND EDGE
UFPER BA&ND EDGE
DESIRED “WALUE

WEIGHTING
DEVIATION
DEVIATION

in DR

EXTREMA FR

(H

0761715
1 ADE2T0

2P TEDE
nfsﬂﬁﬂmﬁ
WAL

» 4\")"14”

oy ey

¥ IMPULSE

FIN
AR
REMEZ

El d
Lo
EA

i

EANDF

i

1]

Hi 1) =

He 20 =

Ht I =

He 4) = -

He 55 o= -

M &) =

He 7 =

Hi P o=

He 9) =

Hifidr = =

H(ll- = =
4 i1y =

H(lp; =

Hil4) = -

Hild: = -

Hilegr = -

H(17) = -

H{18) =

Hil9) =

H{Zy = o~
H{Z1)

H(Z2: =
() =
H(243 =
H(ZS) =
hazé} = -
WMIT?y om e

74609
e ?5:13

eSO

4055707

A AT LT
il by 4 7 [Re ML)

Al -
TR AT BN

-

'nj-JthgwE“JW
-
i

;XCH%NG&
AbE FILTER

&

FRESFOMSE %%k

ISETI050E-0O4
._36° &HA0E-OT
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L EZ498140E-07
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L 2RBEZTHOE-05
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W DOB21TOE-D]
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L SAEBODOSTOE-OD
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-‘445/ﬂb“ﬁ‘“4
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Table C12 : Filter Coefficients for BPF2500 L9 o

EERRAREKER RN R KRR KRR KRR R KRR R KRR ARRRKRR AR ERE AR AKKK J

FINITE IMPULSE RESPONSE (FIR) f!

LINEAR PHASE DIGITAL FILTER DESIGN §
REMEZ EXCHANGE ALGORITHM 1;
BANDPASS FILTER a2y
FILTER LENGTH = 9 o

f'-
23%%% IMPULSE RESPONSE %3%%% 3

H( 1) = .S98%0840E~01 = H( 9) <

H( 2) = .B83494020E-08 = H( 8)

H( 3) = ~,2992%420E+00 = H( 7) -

H( 4) = .14653130E~-07 = H( 6) .

H(S) = .38029830E+00 = H( %) f::
, BAND 1 BAND 2 BAND 3 ;f
LOWER BAND EDGE . 000000000 . 200000000 . 400000000 -
UPPER BAND EDGE . 100000000 . 300000000 . 500000000 :
DESIRED VALUE . 000000000 1. 000000000 . 000000000 =2
WEIGHT ING 1.000000000 1. 000000000 1. 000000000 ¢
DEVIATION . 098508380 . 098508380 . 098508380 2
DEVIATION IN DB =20.130510000 =20.13051000¢ =-20.130510000 ~
EXTREMA FREQUENCIES o
. 0000000 . 1000000 . 2000000 . 2500000 . 3000000 >

. 4000000 X
KRR KRR KRR KRR KRR KRR KRR R R KRR KRR KRR R KKK X
X

o~
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Table C13 : Filter Coefficients for BPF2500 L15 )
L
EEERKEEEKKERR AR AR IR KKK KA KRR AR KKK KRR KK KKK KK g
L
td
FINITE IMPULSE RESPONSE (FIR) )
LINEAR PHASE DIGITAL FILTER DESIGN i
REMEZ EXCHANGE ALGORITHM &
l“
BANDPASS FILTER J
FILTER LENGTH = 15 >
XXX%X IMPULSE RESPONSE XXXXX +
H( 1) = ,57887090E-08 = H( 15)
H( 2) = . 38847450E-01 = H( 14) <
H( 3) = =,68377540E-08 = H( 13) e
H( 4) = .71470100E-01 = H{ 12)
H( S) = —.14981210E-07 = H( 11) bt
H( &) = —,28886740E+00 = H( 10) &
H( 7) = -.43811290E-0B = H( 9 24
H( 8) = .41073S10E+00 = H( 8) %
, o
't
BAND 1 BAND 2 BAND 3 :
LOWER BAND EDGE . 000000000 « 200000000 . 400000000 X
UPPER BAND EDGE . 100000000 . 300000000 « 500000000 s
DESIRED VALUE . 000000000 1.000000000 . 000000000 #h
WEIGHTING 1.000000000 1.000000000 1.000000000 y:
DEVIATION . 053675240 . 053675240 . 053675240 Jb
DEVIATION IN DB -2%.404490000 -2%.404490000 -25.404490000 S
P
EXTREMA FREQUENCIES N,
.0000000 . . 0666667 . 1000000 . 2000000 . 2500000 N
« 3000000 . 4000000 .4333333 . 5000000 "

EERERERKERRRR R AR RRREARRERRERERERARR AR KRR KK KRR R KRR K KKK XK KX




ek oa s ph 5 ati g P i b 2 Ba P vl Ep? Sad a%  2ha® a0, Yy A p Bs 47 3 AN A N e dS 2P 2. 82 80 852 A2 Ao Ata 2t 2t ta) v ey o0 Y 8 tad ¥ 3 Wah Sofh Sak el V “"(
I':

124
Table C14 : Filter Coefficients for BPF2500 L31

1222322220223 38 3083223238338 3228 2000824203022 2222 0228202088 W

FINITE IMFULSE RESFONSE (FIR) i3
LINEAR FHASE DIGITAL FILTER DESIGHN %
REMEZ EXCHANGE ALGORITHM o

.‘
RANDFASS FILTER A
FILTER LERNGTH = 31 b
P (]
Akusd IMFULSE RESFONSE X%ik¥ bt
MO 1) = =.4218T190E~-0S = H{ 317 L,
Hi 2) = —.3606463F0E-02 = H( T0) )
H{ ) =  .22711920E-0%5 = H( 29 >3
H{ 4) = £11443820E~-01 = H{ 28) &
H( S = LIITSEL10E-0T = HO 27 i
H{ &) = C21266F40E-02 = HU 246) )
H( 7) = =,&86096860E-05 = H( 25) o
H( ) = —~,42699350E~-01 = H( 24) xi
H{ @) = CHFELLITROE-Os = H{ 2T g
H{10) = LA268S51LT0E-01 = H{ 22 by
H(11) =  .42237S10E-05 = H({ 21) &
H{12) = «B841095830E~01 ‘= H( 20) Y
Hi13) = =.29&676600E~-05 = H{ 1) O
H(14) = =.291177S0E+00 = H( 18) gt
H{1%) = SAI2TITEOO0E-0E = HO 1T [
Hild) = LIFALOFEDEFDD = HO 14) ;tf
N
) B&anND 1 BAND 2 STATR | LI :i
LOWER BAND EDRE RS ININInInININININ .« 20000000 N TRTRIS LRI N TR ¢
UFFER EAND EDGE « 100000000 o SO00O0D0000 » SOOOOO000 (AR}
DESIRED VALUE y
WEIGHT ING SO o
DEVIATION L01815104 L01815104 LOO1IBISIOL -;
DEVIATION IN DR -54,.22:1210000 -54.821921000G0  -54.821F10000 %:
]
EXTREMA FREQUENCIES ks
- DOOOO00 L DTF0L2E LO70T129 L0F1TR6F M EaleIaTalnTic S
o 2000000 . 2078125 L Z2T5TIF0E L 2E0T7R12 L2Taze” .‘\
L, 201796% . ZOODO000 e 4000000 LA0TB12S CATIE2S00 }l
W AE2T0O00 « SOQO0D00 ;,
\]
ISP RS ES TSR ER RS SASEC RS ESEFSSEIESTREFSESSSETEEED AT *¥
:"s
'J'~
R
-
L)
N
7
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Table C15 : Filter Coefficients for HPF2500 L31

N

S

KRR R ROKOK KOK K OK OKOK R R OKOK SRR R R R R R OO R R R R R ROk

.

FINITE IMPULSE REESFONSE (FIR) N
LINEAR FHASE DIGITAL FILTER DESIGN

REMEZ EXCHANGE ALGORITHM o
4
EBANDFASS FILTER ()
. j# g
FILTER LENGTH = 21 "'
"
$¥%Ey IMPULSE RESFONSE ®¥ioks o
Hi 15 LTIOATEOOE-GE = H{ 1) b5
H{ 2 L 19T4LSF0E~05 = H{ 30 3
HO ) . 36465720E-UZ = H( 27 "

Hi &) LTTOTITO0E-O6 = H 35

HO S) LFATISITOE-GTZ = H{ 7

H{ &) -, 2340982 0E-0S =

( 247 3
HO 257 i

H 24) s
He 23 i
Hi 22)

e 21) py
H( 20 N

H{ 77
H{ 8}
Ht @
H{15)
H{11)
H12)

- 1 T204930E-01
L 20212450E-05
L 29778450E~01

-, 51435951 0E-05

-.S1521800E-G1
L41184T10E~-0OS

T T (T 1 O 1 O 1 T

wowonowoRow N nann

H(1Z) =  .98416T70E-01 = HU 15: o
H(id) = ~.475445T0E-05 = H{ 18 )
H(1%) = ~.Z1547870E+00 = H{ 17} Yy
1i1&) = » SOOO0H4TOE 400 HOolod b

BAaND 1 BAND X

LOWER EBE&ND EDGE . OOOO005L00D C IO000000D

r‘."" v_»

UFFER BAND EDGE ~
DESIRED VALUE J
WEIGHTING

DEVIATION L O01TA9TIT
DEVIATION IN DE -57.I9753I0000 -57.397530000 0

S

1
EXTREMA FREQUENCIES . !
 OT125006 . D62SOH00 L0F1TTES 1210878 . 1484T7% g

. 17328281 1923594 L 200000 . OO0 .

. I2SI906 .3IS07817 LI7E12S0 LA0TADLT LATEET IS A
. 4697219 . SBO00000 e

3823332232232 332 1222322234232 3302203220222 b s
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Table C16 : Filter Coefficients for HPF3500 L9 W,

232222222 S22 RR SISV SRS TR ISR LSS TS

() 4
FINITE IMPULSE RESFONSE (FIR) -
LINEAR FHASE DIGITAL FILTER DESIGH “‘
REMEZ EXCHANGE ALS0ORITHM X
3
BANDFASS FILTER ki
FILTER LENGTH = & e
1,
¢
KXyt IMRPULSE RESFONSE #dddx ‘
Hi 1) = —~.47I852S0E-01 = Hi 9) &
H( 2y = —.S10%6T10E-01 = H{ &) g
Hi 5) = LASTOTI2S0E+0D = Ho T (]
H( 47 = =,05925620E+00 = H( &) *
H{ % = e SORTETEOE+OG = MO S N,
3
BAND 1 EAND 2 e
LOWER EAND EDGE « GOOOOQOOC . AOCOOGGO0 :
UFFER BAND EDGE « SO0QO0OO00 ¢ SQOOO0D00H0 L'-
DESIRELD VALUE  O0OOGOO0 1. OO0O0OO0O0000 i
WEIGHTING 1. 300000000 1. 000000000 b,
DEVIATION » 104961000 . 136449700 zg
DEVIATION IN DE =19.579420000 -17,T00540000 :
LY
EXTREMA FREQUENCIES e
» DOO000O0 L A2TTIET C2TEEHET L TGO000T L Tn Tty Tty
 EBOQGO00
AR E R RN R E e kR ke sk ks nkddy
)
8
Wi
§
W
o
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Table C17 : Filter Coefficients for HPF3500 L15 "

AREEARATE SRR RN RN AR RN RN R ARk Ak ek W,

FINITE IMFULSE RESFONSE (FIf W,
LINEAR FHASE DIGITAL FILTER DESIGN .4
REMEZ EXCHANGE ALGORITHM Qﬂ

(|
)
BANDFASS FILTER .

L
FILTER LENGTH = 15 Pt
Xx¥4% IMPULSE RESFONSE #%xk¥ ]
Hi 1% = =, iT284810E-GL = H. 1% Y,
He IZbo= 0 - 22TE2B8TTOE-DY o= RO 148 %{
H{ T, = LAATHATA0E-DT = K 1TH "

Hi a4 = =, 28Ga7I00E~01 = H( 1o

Hi 51 = = 270ET480E-01 = H{ |15 -
He ob =  J131SI7I0E+GD = MO 10) A
H{ 7 = =.25372183E+00 = H( % ")
Hi{ 2) = LTOLREFS0E+00 = HI &) iy
.s

BAND 1 BAND
LOWER EAND EDGE CODQOOO0000 400004
UFFER BAND EDGE o BOOOOO0 sTaTall
DESIRED VALUE © L OO0O000000 1. 000000000
WEIGHTING 1. 000000000 1. OGOO0O00GD
DEVIATION CQTERZ2TTLIO SOEE427TL0

3 PR

Y

DEVIATIDN IN DR -28.771420000 -28,771430000 3
\."

\
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Table C18 : Filter Coefficients for HPF3500 L31 "

KK XK KKK K OR R KRR R OK K RO KK R R R R R R Ry :
FINITE IMFULSE RESFONSE (FIR) e

LINEAR FHASE D1GITAL FILTER DESIGN e

REMEZ EXCHANGE ALGORITHM )

{4

BANDFASS FILTER g

FILTER LENGTH = 21 o

¥y TMPULSE RESFONSE ¥y
= -.1B96BI40E-GC

H( 1o =

Hi{ ) « 1EEZ20ES0E~. = '
Ho )y = . 1244 T70T0OE—( = {
Hi 4) = =—,6Za57850E-00 = %,
H{ ) =  .76874290E-0Z =

Hi 6) = -.34516%Z0E-03 = .
H( 73 = =—.13507420E-01 = %
Ht 8) =  .Z2147T700E-01 = H( 24) Pt
HO §) = =,%47463S90E-02 = H{ 23

H(10) = =.208S00630E-01 = H( 22 N
H(11) = LS1T78460E-01 = H( 21) .
H(1Z2) = -.41218850E~01 = H{ 20} ‘\
H(1Z) = -.29878980E-01 = H( 15} .

H(14) = « 146157 10E+00

H{1S = 2EEEE100E+OD

W
T
- s
Rl
S

Hiis) = DS LIOESOO = Hi{ 140
*u
E&ND 1 EAND  C e
LOWER E&HND EDGE y

UFFER BAND EDGE
DESIRED VALUE

WEIGHTINC e
DEVIATION LOOLS2T1EL LOC1SI21EL o
DEVIATION IN DE -S6.IS50770000  —S&, TSG7IO000 Ph
o

EXTREMA FREQUENCIES o
L DOOOGO0 LOT12S00 0644571 LOSSTOT X

. 1382071 . 138945721 2207 0GT L 2ABNEES . T ;f

. 2727088 . 000000 « GOO0000 . A07EIRE S T =Y
4566406 L SO00000 >

e

S

SR ESE SR SRS ST ETSOERI SR AR ES TSSO REFESR RS SR SRS S I i
4

N

¢

2 ]

DA AS
sy

| j s Y Y f I PV T8, § > ~» > “m oW "~ Y
SN NN TNt Bt ."‘u'.‘.l.\i!'s'. N, A A .u'. Xx .'8‘» 99,088, n‘: 0"'!"‘1‘{'0',- (L R TAT S A 0‘!‘.‘.‘ W, d‘i‘- A TAS LN !"
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Table C19 : Filter Coefficients for HPF3500 L63 "

Xl
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: FINITE }HPULBE

,
LINEAR FHA DIGTITAaL , q
- — N
REMEZ EXC f 4ET ALBORITH |'i,
ot

%

BAMDFAES FILTER -
.

FILTER LENGTH = &3 A

phrss IMPULSE RESFONSE ¥dtxy ¥
HO 1= L 11472090E-04 = W
He Z) = = I9E07700E~0% = -
MiTy o= —_4un98000E—nq = ﬁ,
i 43 = _Q4DHAF1O;—wu = #
He T} = =417 $ = 2
Hi & = —.1"‘d TI0E = '.::
MO 7) = . IBAT6B40E = .
H{ 27 = =, TS5T17870E-0T =
He @ = -, 215084340E-02 v
H1o) = . 10483880E-07 = Y
Hills = = 12607SA0E-0F = o
Hiim = e2%18080E-07 = ot
Mi1T: = . = = t«
Rijd: = —. = y:
F1Ty o= L1477 .'E--(‘)’-._-‘ = ot
Hite) =  .72220200E-00 = W
H17 = —.“H"*"”"nf—h, = Al
Hi18) = ,S2939480E-02 = i
Hilgsy = . T1994880E~0T = "
N . [
: Vioom = 12624T10E-01 = :
HIZ1Y = L 1TI296960E~ci = )
HI22) = —,21857700E-07 = U
H(2T) = -,19412780E-01 = 0
H(24) =  ,28120110E~01 = >
HiZS: = —,114T3360E~01 = W
HiZ&) = =-.26148700E-01 = 3 £
AT = . - = e ]
I = -, = M TA o
Ly = - = H{oTE N
i = . = T4 N
P 2z - = o ]

RAND i

—owER BAND EDLGE

VUF=ER BaND EDGE .TUOOQDC'

"
DESIRED VALUE 700000000 o
WEIGHTING 1 GOOOO0OO0 s
DEVIATION . 00000304 =

DEVIATION IN DE -101.884200000

R IR I TRINTALS) L ISE2G0 R

EVTREMA FREQUENCIES | :
) e '
'

W EVTE Y T . TR R "

.]Ju‘cf L1TI8TED o
.2T14457 L245117TT -
2919922 2973514 | N
LA0RTeEl L4175781 .1&1“7” Lamme L g‘
CATLTILEN ABLTETT
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FILE: MAKEDATA FULL At FTD COMPUTING FACILITY "l
131 W)
3
(...tl....-tl".‘.“-“t.l--"“‘t‘.ttlltl.‘l-““"..-lt--‘l.t‘“.l.‘.) i A
(* *)
(= program MAKEDATA_FILE *) Y
(= *) ,
(- This program alliows the user to make a data file that contains *) ;
(* a signal with many different characteristics possible or some *) G
(* combination of characteristics. These possibilities are listed =) gr
(* in the first part of the matin program and include various time *) Wy
(* waveforms and two different noise distributions. The program is *) W
(* designed to give the user maximum flexibility in selecting the *)
(* desired signa)l characteristics. *)
(= *)
('-.‘..-‘-..‘.."..-."‘..“‘.“..'l-‘.‘.‘.‘.l‘..‘l‘t"‘-.l.'..“.‘-.“) §
program MAKEDATA_FILE(INPUT,OUTPUT): i3

const 4

1

Pl = 3.1415926535898;
MAX_NUM_SAMPLES = 16384;

- =
’

var N
CH : CHAR:; "
DATE, ﬁ
TIME : ALFA; {a
DATA_SAMPLES : TEXT;

SEED1, h\
SEED2, S
ANS, o~
1. Ky
J INTEGER; o)
A, M
v, W
R .
0. )
X, f
DUMMY _NUM, "
INITIAL_VAL,
SIGMA_SQ, Y,
LEVEL, ﬁ}
PROBIMP, }
IMPULSE_VALUE,
STEP_OFFSET, g
NOISE_AMPLITUDE : REAL; i
FILE_CHOICE, ,.‘
FREQ, <
CHOICE, n
START_FREQ, i
STOP_FREQ, B
START_SAMP, -
STOP_SAMP, ",
NUMSAMP , .o
NUMSTEPS,
SIGN : INTEGER: ﬁﬂ
DONE : BOOLEAN; W
SIGNAL : array(.1..MAX_NUM_SAMPLES.) of REAL:
%INCLUDE CMS

v

(#e—cccaccccccnccnn=" trcwcerraccsacacnanas rrccrcrrrecc e ean= carmcrcrcc - ) -‘I

(= *) ">

(* function SGN *) :{»

(» -) i a?

(* Tnhis function returns the sign of the TEST_VALUE. *) -

(= =)

(Pecccnacennccncccacccccarcccnen B L L L L cesmcaccccscencn= .)

function SGN ( TEST_ VALUE : REAL ) : INTEGER;

begin
SGN := 1;

A R S R A G G S L G G N R I AN R L SN AN A T e A S
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FILE: MAKEDATA FULL A1 FTD COMPUTING FACILITY 132 .,
)
if TEST_VALUE < 0 then d
SGN := -1; !
ond; .
DY
begin (= of MAKEDATA_FILE *) ’
d
termin(INPUT); 2l
termout (OUTPUT); -
CMS( 'CLRSCRN’,1); oy
writein(‘Would you 11ke to 1) add to the existing signal’); S
writein(’ 2) add to the ideal signal‘): %
writelIn(’ or eise) make 8 new signal’); F-'
readin(ANS); ,
i1f (ANS = 1) or (ANS = 2) then o
begin -
case ANS of iy
1 : reset(DATA_SAMPLES, ‘name=SIGNAL.PDATA.*’); !
2 : reset(DATA_SAMPLES, ‘name=IDEAL .PDATA.*’); .
end; ~
readin(DATA_SAMPLES,I,DUMMY_NUM) N
while not(eof(DATA_SAMPLES)) do el
readin(DATA_SAMPLES,I . SIGNAL(.1.)); )
NUMSAMP :s 1: )
writein(‘There are’ ,NUMSAMP:6,’' samples of data’):; “
end
else ; J
repeat o9
writeIn(’How many sampies to take (1024 recommended)?’); N
read! n(NUMSAMP) ; 3
17 (NUMSAMP > MAX_NUM_SAMPLES) or (NUMSAMP < 1) then y
writein(’The number of samples must be between 1 and 4096'); >
until (NUMSAMP > O) and (NUMSAMP <= MAX_NUM_SAMPLES); L
datetime(DATE,.TIME); (* generate random seed for *) XY
readstr(str(TIME),I:2,CH,SEED1:2,CH,SEED2); (* random number *) ,
I :» I*SEED1*SEED2+1+SEED1+SEED2; (* generator *) :‘
U := random(l); &
writein(l, u): J
writeln; 5
writeIn(’BUILD A SIGNAL’); L2
repeat
writein(’what would you like in it?'); N
writeln(’ 1) Constant leve)’); .
writeln(’ 2) Monotone ramps’): S
writein(’ - 3) Sinusoids’); -
writeIn(’ 4) Steps’): ,-'_
writein(’ 5) Gaussian noise’); Py
writein(’ 6) Laplacian noise’); .
writeln(’ 7) 1IR filter the signal’); .
writeln(’ 8) That'‘s all’); g
readin(CHOICE); .
case CHOICE of E‘
n
1 : begin "(
writein(‘wWhat shall the constant leve! be?’); iy,
readIn(LEVEL);
tf LEVEL <> O then =y
for 1 :» 1 to NUMSAMP do v,:‘
SIGNAL(.I.) := LEVEL; )
end; Y
'l.
2 : begin .‘:
writeIin(‘'What is the starting sample for the ramp?’); .
readIn(START_SAMP):
writein(’'And the ending sample?’); P
readin(STOP_SAMP);
writeIin(’Te what relative value should the ramp rise(fall)?’): N
resdIn(LEVEL); N
INITIAL_VAL := SIGNAL(.START_SAMP.);
for I := START_SAMP to STOP_SAMP do
SIGNAL(.I.) := INITIAL_VAL + LEVEL/abS(STOP_SAMP-START_SAMP)® \
e
‘11
PR, & L . .- » - . RIS Rt at AR A" " a® h” " - LY Y AR GCRTR RS ORN
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FILE: MAKEDATA FULL At FTD COMPUTING FACILITY
133
(I-START_SAMP);
end;
3 : begin

writein(’Input frequency of sinusiod in Hz(0 {1f group desired)’);
readin(FREQ);
it FREQ <> O then
begin
writein(‘starting sample(0 if al) samples)?’);
readIn(START_SAMP);
1f START_SAMP = O then
in
START_SAMP := 1;
STOP_SAMP := NUMSAMP;
end
else
begin
writeIn(‘ending sample?’);
resdin(STOP_ SAMP ) ;
ondg;
for I := START_SAMP to STOP_SAMP do
SIGNAL( I. ) s SIGNAL(.1.) + sin(2*PI*FREQ*I/NUMSAMP) ;
end
else
begin
writeln(‘wWhat is the starting freguency?’);
readin(START_FREQ):
writeln(‘Whnat is the last freguency?’);
readin(STOP_FREQ):
for FREQ := START FREQ to STOP_FREQ do
for 1 := 1 to NUHSANP do
SIGNAL( 1.) := SIGNAL(.1.) + sin(2*PI*FREQ*I/NUMSAMP) ;
ond;
end;

4 : pegin
writeln(’'How many steps in the signal?’);
readin{NUMSTEPS ) ;
for J := 1 to NUMSTEPS do
b.g'n
writein(’Input the starting sample for step’.J):
readIn(START_SAMP)
writein(’And the last sample?’);
readin(STOP_SAMP);
writeIn(’'And the offset?’);
readIn(STEP_OFFSET):
for 1 := START SAMP to STOP_SAMP do
SIGNAL( 1.) := SIGNAL(.1.) + STEP_OFFSET;
end;
end;

S : begin
writeln(‘Wnat shal) the noise sigma squared be (gaussian dist. )?2°);
writein(’'Sigma squared?’):
readIn(SIGMA_SQ):
for 1 := 1 to NUMSAMP do
bogin
U
R
U
O

random(0);
sqrt(-2.0° SIGMA_SQ * n(V)):
r-ndon(O);
2.0 *P1 * U;
R * cos(0):
SIGNAL( 1.) := SIGNAL(.I.) * X:
end;
end;

6 : begin
writeln('wWhat shall the probability of an impulse be?’);
readin(PROBIMP);
1f PROBIMP > O then
pegin
writeln(’00 you want 1) 81) positive impulses or 2) both negative’,
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‘ and positive impulses.’): .
readin(SIGN);
t* SIGN = 2 then
SIGN := -1%; .
writein{‘what shall the impulse standard deviation be?’); N
readin(IMPULSE_VALUE); Y
for J := 1 to NUMSAMP do n
begin A
U := random(0); !
if U <= PROBIMP then
begin b
U := random(0): \
X := =(IMPULSE_VALUE/sqrt(2))*1n(1-U); >
SIGNAL(.J.) :+ SIGNAL(.J.) + X = SGN(random(O) + v
(0.8 * SIGN)); X
end; .f
end;
end;
end; o
AN
7 : begin o
writeln(’What is the parameter ALPHA?’); N
readin(A); ,
for 1 := NUMSAMP downto 2 do !
SIGNAL(.I.) := A®SIGNAL(.I-1.) + SIGNAL(.I.): ph
end;
8 : ‘J.
DONE := true; )
OTHERWISE ( do nothing *) g
writeln('That is not an option’); K
4
end; (* of case statement *)
CMS('CLRSCRN’ ,1); ~'y
\
until DONE; :
4
writeln(‘Is this an 1) tdea) signal or a 2) signal to be filtered?’):; >
readin(FILE_CHOICE): N
if FILE_CHOICE = 1 then e,
rewr 1t@(DATA_SAMPLES, ‘name=IDEAL .PDATA.*’) ,d
else -
rewrite(DATA_SAMPLES, 'namesSIGNAL.PDATA.*’); g
(* writeIn(DATA_SAMPLES,O,NUMSAMP/1000.0:15:8); *) 2
for I := 1 to NUMSAMP do .
writeln(DATA_SAMPLES,I:4,SIGNAL(.I.):15:8); w
end; (* of MAKEDATA_FILE =) "
>
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(-...‘..'.‘....‘..-.“.l".-‘l'-“‘.'..-‘-""‘“-‘..“."““.‘.-'.-.‘)

PASCAL At  FTD COMPUTING FACILITY

program FREQ

This program takes the discrete Fourier transform (DFT) of a
signal. The signal may be up to 16384 elements long, but that
length is not recommended due to the length of time to
calculate. The DFT is implemented using a decimation-in-
frequency FFT algorithm.

(““....-.‘...-..."‘."l‘..‘..‘."".--"-‘.‘-“-.‘....‘.‘..‘..“.“‘)

program FREQ (INPUT,OUTPUT);

%INCLUDE CMS

const

Pl = 3.1415926535898;
MAX_ARRAY_SIZ2E = 16384;

var

(*
(*
(=

NV2,

NM1,

1P,

LE,

K : INTEGER;
LARGEST,

TEST,

LE1,

UR,

vI,

WR,

wl,

TR,

TI,

TMR,

™1 : REAL:
MAG,

PHASE ,

XR,

X3 : array(.
FILEA : TEXT;

1..MAX_ARRAY_SIZE.) of REAL:

function RAISE

This function ratises A to an integer power N. This function 1s
not tntringically availadle tn the PasCa! comptler.

( Socscscsassncsavcoscaan

function RAISE ( AN : INTEGER ) : INTEGER:

var

TEwWP,
I : INTEGER;

pegin

TEWP o ¢

for I .» { to N a0
TEMP o TEMP * A,
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RAISE := TEMP;

ond;

(.-----------.--------------------.----------------------------------..)
(= .)
(* function LOG *)
(e *)

(* This function implements the base 10 logaritim of X. The Pascal *)
(* compiler only gives an intrinsic natural logarithm. The base 10 *)

(* logartithm 1s calculated by ';
(* .
(= log x = In x )
(* ————- *)
(= in 10 *)
(° )
(tecca- ercsecavscccacnccscnaenae [ P T T ------------------------.)
function LOG ( X : REAL ) : REAL:

begin

tf X = 0.0 then
X :s 0.00000001;
LOG :*» 1n(x)/'n(10.0):

ond;

begin (* of FREQ )

tormin(INPUT) ;
termout (OUTAUT)
CHS('CLASCAN’ . I1):
writeIn( '0f which ftle are we teking the DFT’);
writelin(’ 1) 106AL’);
writeIn(’ 2) SIGNAL’);
writelin( 3) GRAPW’ ).
writein(’ 4) Rxx');
read!n(CHOICE);
N e O;
t? CHDICE <> 2 then
Degin
case CHOICE of
1 . reset(FlLEA, 'name=IDEAL .POATA . *’);
2 : reset(FILEA, 'neme=SIANAL . POATA *');
4 : reset(FlLEA. name=Rxx.POATA *');
othervise
ong;
1 CHOICE <> 4 then
reedin(FILEA DUMMY XR( .1 )): (*XR(1)->cummy reac file size®)
repest (* read tn aata to FFT *)
N * N+ Y
readIn(FILEA . DUMMY XR( N ));
XI{ N ) = Q;
until eof(FILEA);
ong
[ 2% ]
segtn
reset(FILEA, name=GRAPHM POATA < ).
repee t
N o N e 1
ree@ In(FILEA . OUMMY XI( N ) XR( N )). (* XI(N) i3 &8 Gummy read®)
XIt N ) e O
unti) eaf(FILEA) .

ong .
" e« 0, (* calculate M *)
TESY e N,
ropee t

TESY o TEST/2.

" o B s
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until TEST <= 1;
if TEST < 1 then

for 1 :s= N+1 to RAISE(2,M) do (* length /=2%*M, pad with O *) -
XR(.1.) := 0.0; S
N := R‘Is:(z-"); ’ DY
writein(n); .
« for L := 1 to M do (* calculate FFT *) .
begin ..t
LE := RAISE(2,M+1-L); e
LE1 := LE / 2.0; -
UR := 1; 3t
ut :s 0; H
WR := cos(PI/LE1); oy
Wl := -gin(PI/LE1); o
for J :» 1 to round(LE1) do ﬂ&
begin [\
for K := pound((u-1)/LE) to round(N/LE) do
m‘n .,'
1 := KoLE + u; gt
it 1 <= N then . i
begin Iy

IP := I + round(LE1);

TR :e XR(.I.) + XR(.1P.):

TI := XI(.1.) ¢+ XI(.IP.); Py,
TMR :=XR(.I1.) = XR(.IP.); =
T™I := XI(.1.) - XI(.IP.):

XR(.IP.) := TMR*UR - TMI=*Ul; $$
XI(.IP.) := TMR*UI + TMISUR; ’s
XR(.1.) := TR; O
X1(.1.) :e TI; 3
end; :}.
oend; (* NEXT K »*) R
TR := UR*WR - Ul=wWI]; =
ULl :s UR*WI + UI*WR; \
UR := TR; :
end; (* NEXT J *) &
end; (* NEXT L *) . X
NV2 := N aiv 2; M
NM1 = N-1; {7
J e 1 ~
for I := 1 t0 NM1 do .
begin /
i1t ] < J then .'\
begin 7
TR := XR(.I.): N
XR(.1.) := XR(.JV.); gt
XR(.J.) := TR;
T := XI(.1.); g&'
X1(.1.) :e X1(.J.);
XI(.J.) := TI;
end; _Q:
K := NV2:; hat.
while K < J do %
besgin ﬂ%
J s J=K; Yy
K :»s K div 2; hﬁ
ond; _
J s JeK;
end; (* NEXT I »*) :}
for 1 :*= 1 t0o N do (* calc mag & phass of DFT *) \’
pegin -
MAG(.1.) :» sqrt(sqr(XR(.1.)) + sqr(XI1(.1.))):; :
PHASE(.1.) :» 0.0; W,
1f XR(.1.) <> 0.0 then Ol
PHASE(.1.) := arctan(XI(.I1.)/XR(.1.)) * 180 / PI; -
1 XR(.1.) < 0.0 then 9
1# XI1(.1.) > 0.0 then A
PHASE(.1.) := 180 + PHASE(.I.) e
olse -
PHASE(.1.) := -180 + PHASE(.1.) W
ond; -
N

™
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writein(‘/Would you 1ike the output in LOG magnitude (1-yes,0-no)?’);
readin(CHOICE);
i1 CHOICE = 1 then
begin
LARGEST := 0.0;
for 1 := 1 tO N do
LARGEST := max(MAG(.I.),LARGEST);
for 1 := 1 to N do
MAG(.X.) := 20*10g(MAG(.1.)/LARGEST);
end;

writein(’'Ils this 1) an X(w)'’);
writeln(’ 2) a Y(w)');
writein(’ or else) a regular freq output’);
readin(CHOICE);
case CHOICE of
1 : rewrite(FILEA, ' name=FREQX.PDATA.*');
2 : rewrite(FILEA, 'name=FREQY.PDATA.*');
otherwise
rewrite(FILEA, 'name=FREQ.PDATA.*');
end;
ftor I := 1 to min(N, 1024) ao
write\n(FILEA,1:4 MAG(.1.):15:8);

end. (e of FREQ *)
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(.l.-l‘.'..'.“‘-"'.'.--'.“l"“‘."‘.l'."--'.‘-.‘l-“‘-'l"."..ll.)

(* *)
(v program FILTER *)
(* *)
(= Author: Doug Rider =)
(* Date : 10 July 86 .)
(= =)
(* Purpose : This program was designed to implement a general ized*)
:‘ digital filter according to the following scheme. ‘;
L ] [ ]
(» Once a window size has been chosen the user is asked to =)
(* supply the requested weighting values or choose a *)
(= predef ined set for either the time or rank weights, *)
- [ ]
(- 5
(* *)
(= time ordered =---~-ce-cceacccccao *)
(= tput ==> | | | ... | | *)
(~ eeccsccecccacvennvens’ .)
(* 1 t t... ) *)
(= A(1)-0 -0 =-0...A(n)-0 *)
(e L B | * .)
(. L L L T R T ‘)
(e | SORT | *)
(. LAl DL L3 L DL T AT ‘)
(* LI S . * .)
(» B(1)-0 -0 -0...8(n)-0 *)
(= ] 1 T L) =)
(‘ EE N cocccecsea .)
(= |+ o+ ¢.. + | = output *)
(~ R YT 1 Y Sy -)
(= *)
(» The program then opens the external data *)
(= file where the values of the sampled *)
(= signal! to be filtered are and initia)izes the window. *)
(» Initializing consists of filling the first half of the*)
(= window with the first data value and then reading in *)
(- subsequent values until the window is filled. Next =)
(= the window is weighted by the W() set of coefficiants.*)
(= The window is then rank ordered. After this the *)
(= second set Of coefficients are applied which trim off =)
(= the smaliest and largest values of the data. *)
(= After this last trimming the remaining samples are *)
(= summed and gain adjusted. Finally, the *)
(= window is stepped over one value in time by deleting *)
(= the oldest value and inserting the new value in the *)
(» proper rank order. The filtering and stepping .)
:- continue until the end of the data file is reached. *)
. *)

(..“‘."‘l--"“"."‘-.".--"."“.'-“.-l“..“.“-.‘.--"I.“!“-‘)

program FILTER (INPUT,OUTPUT):

%INCLUDE CMS
const

MAX_WINDOW_SI2E = €4;
type

DATA_ELEMENT_POINTER
DATA_ELEMENT

WEIGHT_ARRAY_TYPE

var

NN O OIS SO R

@DATA_ELEMENT;
record
ACTUAL_VALUE

MODIFIED_VAL :
NEXT_LARGEST :

NEXT_IN_TIME
end;

REAL;
REAL;
DATA_ELEMENT_POINTER;
: DATA_ELEMENT_POINTER

array(.1..MAX_WINDOW_SIZE.) of REAL;
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bt
SMALLEST_VALUE, -
OLDEST_VALUE : DATA_ELEMENT _POINTER; g
DATA_FILE_SIZE, ,
1, ' !‘
WINDOW_SIZE : INTEGER; "
ouUMMY , r
CODED_FILE_SIZE, o
FILTER_INPUT, i
FILTER_OUTPUT : REAL; W
GRAPH_FILE, 1
DATA_SAMPLES : TEXT; .
END_OF_DATA : BOOLEAN; !
TIME_WEIGHT_ARRAY,
RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE; \
,’
(...‘..-...-'.--.‘..‘-‘“‘.“.‘..‘O‘.‘.“"'-‘-"'..‘l‘...t---....-“.‘) ||."
(. .) ¥
(* procedure GET_PARAMETERS *) .
(* .) $
(= This procedure returns the user input parameters that will be *) ,
(* used during the program run. *) )
(= *) ,
(-“..‘-...-“....‘U"..".‘-‘.".-.-“‘.‘.I“.".....‘l....““-.“..‘) :~
procedure GET_PARAMETERS ( var WINDOW_SIZE : INTEGER; -
var TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE: .
var RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE); \y,
~*‘
var 2
2
ocC, i
ANS, hi'
CHOICE, L X
1 : INTEGER;
CHECK, )
VALID_SIZ2E : BOOLEAN;: q
GAIN, 4
DUMMY : REAL; bt
COEFF_FILE : TEXT; (
o
»
ey upi gy | (-v
(* .) L
(= procedure MANUAL_INPUT ) s
(» *) )
(» This procedurs lets the user input the weignting ") o
(» coefficients to be used. ) o
(= *) '

( LT PR P e L T Y e e L e L R I R R L Ll )

e

procecure MANUAL_INPUT( var INPUT_ARRAY : WEIGHT_ARRAY_TYPE;
WINDOW_SIZE : INTEGER);

v“ic;n..

var
1. .
ANS : INTEGER;
.
begin R
writein(’lnput the desired ?filter coefficients.’'); -'$
for 1 := 1 to rounct(WINDOW_SI2£/2) co Ny
vegin -
writeIn('A(’,1:2,') =« 7°); :
readIn{ INPUT_ARRAY(.1.)); oy
ond; Ny
writeIn(‘ls the filter symmetric (1-yes.0-no)?'); W
readin(ANS): X
for 1 .o round(wINDOW_SI12£/2)+1 to WINDOw_SIZE ao \-:
1 ANS o t then o
\
&
h..

: . - y 22 - . . - “u - P Y “e a -
NN NS ,a“.._ Y .s.l ‘J“.l\. ala . W v‘ l-ﬁ o) \"" """ v" ' o "‘""- |
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(*

INPUT_ARRAY(.I.) :=INPUT_ARRAY(.WINDOW_SIZE - I + 4.)

else
begin
writeIin(‘A(’,1:2,’) = 2');
readin(INPUT_ARRAY(.1.));
end;
ond;
(‘-—--------------------------------------9--------------------—------‘)
*)
procedure DO_ALPHA_TRIM ‘;
»
This procedure calculates the number of elements to be *)
trimmed off of each end of the rank weight array and O‘s them. ';
-

( L L L L L T T R e Y P P P P P LR L P P P P R L P L e e L Y )

procecure DO_ALPHA_TRIM ( var RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE:
UINDOV SI2E : INTEGER):

var

x L]

NUM_TRIMMED,

TRIN,

NUM_LEFT : INTEGER;

begin

writein(‘'Input Now many elements to trim (must be even #))’);
read!n(NUM_TRIMMED) ;
TRIM := NUM_TRIMMED div 2;
NUM_LEFT := WINODOW_SIZE - NUM_TRIMMED:;
for [ := 1 to TRIM a0
RANK_WEIGHT_ARRAY(.1.) := O;
for I := TRIM+1 to TRXI‘M_LEFT do
RANK_WEIGHT_ARRAY(.I. ) e 9
for 1 := Tllﬂ*mﬂ LEFT+1 to WINOOW_SIZE do
RAM _WEIGHT ARRAV( 1.) := Q3

ena;
(Pemecccccccvrccnccrercncccrcocncccccnccncan cccsccsrccrmscasnmacncsnancanalt)
*)
procecure CALCULATE ';
-
This procedure calculates the gain factor for the filter *)
coefficients so that the output is properly scaled. ';
-

(Pecmcecccencecacmccmacccecccecccrecocacenacmacmasemacccanaanaccnaceat)

procedure CALCULATE ( var GAIN : REAL;
WINDOW_SIZE : INTEGER;
TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE;
RANK_WEIGHT _ARRAY : WEIGHT_ARRAY_TYPE):

var

A
v
1 : INTEGER;

ORDER : WEIGMT_ARRAY_TYPE; (* this is the TWA ordered *)

degin

ORDER(.1.) :® TIME_WEIGHT_ARRAY(.1.);

for I :e 2 to WINDOW_SI2E ao
19 TIME_WEIGHT_ARRAY(.I.) < ORDER(.1.) then
pegin

141
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for A := (1-1) downto 1 do
ORDER(.A+1.) := ORDER(.A.):
ORDER(.1.) := TIME_WEIGHT_ARRAY(.I.);
end
else
begin
J s 2;
while (ORDER(.J.) <> 0) and (TIME_WEIGHT_ARRAY(.I.) >
ORDER(.J.)) do
J s J o+ 1;
for A :s (1-1) downto J do
ORDER( .A+1.) := ORDER(.A.):
ORDER(.J.) :» TIME_WEIGHT_ARRAY(.I.):
end;
GAIN := 0.0:;
for 1 := { to WINDOW_SIZE do
GAIN := GAIN + ORDER(.I.) * RANK_WEIGHT_ARRAY(.I.);

end;
(.--------—--—-------—.---—--- --------- comcrmconnenvane --------.------.)
(» *)
:' procedure SHOW ';
- L
(» This procedure clears the screen and then provides a 1ist *)
2‘ of the cosffictents to the user. *)
. *)

(----------.------------------.---------------------------------------.)

procedure SHOW ( TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE;
RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE:
WINDOW_SIZE™: INTEGER):

var
I : INTEGER:

begin
CMS(‘CLRSCRN’ ,1);
writein(/TIME COQEFF VALUE RANK COEFF VALUE’):
for 1 := 1 to WINOOW_SIZE do
writeln(’ A(’,1:2.’) =’ TIME_WEIGHT_ARRAY(.I.):12:5,
’ B(’,1:2,’) =’ RANK_WEIGHT_ARRAY(.1.):12:5);

end;
(.---.---.------------------------------—-- --------- T a)
(- -)
(= procedure MODIFY *)
(» : =)
(* This procedure modifies either the whole weight array or )
(» individual coefficient values that the user desires. *)
(= *)

(.-------o----------------------------—-------~—-----’--—--—-----------.)

procedure MODIFY ( var MODIFY_ARRAY : WEIGHT_ARRAY_TYPE;
WINOOW_SIZE : INTEGER);

var

I : INTEGER;
VAL : REAL;

begin
writein(‘which element ( O-> a)) elements )’);
readin(l1);
11 =0 then
MANUAL_INPUT (MODIFY_ARRAY , WINDOW_SIZE)
eise
begin
writein('what is the new value’);
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readin(VAL);
MODIFY_ARRAY(.I.) := VAL;
end:;
end;

begin (= of GET_PARAMETERS *)
CMS('CLRSCRN’,1);
writeln;
writein(’'This program implements a digital filter.’);
writelin;
repeat
writeIn(’Input the desired window size(must be an odd integer).’);
writeln;
read(WINOOW_SIZE);
VALID_SI2E := true;
1f not(odd(WINDOW_SIZE)) then
begin
writein(’'The window size must be an odd integer.’);
VALID_SIZE := false;
end;
1f (WINDOW_SIZE > MAX_WINDOW_SIZE) or (WINDOW_SIZE < O) then
begin
writeIn(‘The size must be positive but less than ',
MAX_WINDOW_SIZE);
VALID_SIZE := false;
end;
unti) VALID_SIZE;

writein(’Would you 1ike to initialize a predetermined filter’);
writeIin(’'(1.e. a mean or median filter) or manually input the’);
writeln('filter coefficients?’);

writeIn(’ 1) mean filter’):;

writein(’ 2) median filter’);

writein(’ 3) alpha-trimmad mean filter’);
writein(’ 4) alpha-trimmed inear filter');
writein(’ 5) other coefficient input’);
readin(CHOICE);

CMS(‘CLRSCRN’,1);
case CHOICE of
1: for I := 1 to WINDOW_SIZE do
begin
TIME_WEIGHT_ARRAY(.I.) := 1/WINDOW_SIZE;
RANK_WEIGHT_ARRAY(.I.) := 1;

oend;
2: begtin
for I := 1 to WINDOW_SIZ2E do
begin
TIME_WEIGHT_ARRAY(.I.) := 1;
RANK_WEIGHT_ARRAY(.I.) := O;
end;
RANK_WEIGHT_ARRAY(.round(WINDOW_SIZE/2).) := 1;
and;
3: begin

for I := 1 to WINDOW_SI2E do
TIME_WEIGHT_ARRAY(.I1.) := 1;

DO_ALPHA_TRIM(RANK_WEIGHT_ARRAY ,WINDOW_SIZE);
CALCULATE(GAIN,WINDOW_SIZE, TIME_WEIGHT_ARRAY,RANK_WEIGHT_ARRAY);
for 1 := 1 to WINDOW_SIZE do

RANK_WEIGHT_ARRAY(.1.) := RANK_WEIGHT_ARRAY(.I.)/GAIN;:

end;
4: Dbegin

CMS(’CLRSCRN' ,1):
writein;
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writeln(‘Alpha-trimmed linear filter’); .;
writein; 4
writein(’Are the desired filter coefficients saved(i-yes,0-no)?’);
readin(ANS): e
1f ANS = { then
begin
reset(COEFF_FILE, ‘namesFIR.COEFF.*‘); \
for I := 1 to WINDOW_SIZE do 1)
readin(COEFF_FILE, TIME_WEIGHT_ARRAY(.I.)): N
end Al
else ,
begin K
CMS( ‘CLRSCRN’ ,1); !
MANUAL _ INPUT(TIHE _WEIGHT_ARRAY ,WINDOW_ SIZE); t
writein( ‘Do you want to save this set (1-y¢s.o-no)? ): ey
readin(ANS); )
1f ANS = 1 then s
begin .
rewrite(COEFF_FILE, ‘name=FIR.COEFF.*’); ¥
for 1 :s 1 to WINDOW_SIZE do N
write1n(COEFF_FILE, TIME_WEIGHT_ARRAY(.I.)): -
end; X
end; S
CMS(’CLRSCRN’ ,1): Q
DO_ALPHA_TRIM(RANK_WEIGHT_ARRAY,WINDOW_SIZE): W
CALCULATE(GAIN,WINDOW_SIZE, TIME_WEIGHT_ARRAY,RANK_WEIGHT_ARRAY): 3
writeIn(‘The gain for this set of coefficients 18’ ,GAIN:7:4); !
writelin; "d
writeIn(‘1s this a filter that passes dc (1-yes,0-no)?’); thy
readin(DC); %'
1 OC = 1 then W
begin ’ ]
writein(’The rank weighting coefficients have been divided’); 4
writein(’ by the gain in order to normalize the dc level’): "]
for 1 := 1 to WINDOW_SIZE do ¢y
RAM( WE1GHT ARI!AV( I.) := RANK _WEIGHT, ARRAY( 1.)/GAIN; :
end;
3
ond; v'ﬁ
S: begin ™3
By
writeIn(’Are the desired filter coefficients saved(1-yes,0-no)?’'); ﬁ:
readin{ANS); .\
if ANS = 1 then "!a
pegin 2l
reset(COEFF_FILE, 'name=FIR.COEFF.»’); ()
for I :e 1 to WINDOW_SIZE do )
readIn{COEFF_FILE, TIME_WEIGHT_ARRAY(.1.)): O N
end . . V
else 'pz
begin w)
CMS(’'CLRSCRN' ,I1): ’ N
writelin; o
writeIn(’/Now input the ' ,WINDOW_SIZE:2,’' weight parameters for the’); AN
writein(’time ordered buffer’); N
MANUAL_INPUT (TIME_WEIGHT_ARRAY ,WINDOW_SIZE); N
writein(’'Do you want to save this set (1-yes,0-no)?’); ;
readin(ANS); '\
1f ANS = 1 then Ay
begin S
rewrite(COEFF_FILE, 'name=FIR.CDEFF.*’); N,
for 1 :s 1 to WINDOW_SIZE do A
write1n(COEFF_FILE, TIME_WEIGHT_ARRAY(.1.)); W
end; :
ond;
CMS(‘CLRSCRN’ ,1); iy
writeln; \Y
writeIn{’Now the same thing for the rank ordered buffer’):; 3ﬁ
MANUAL _INPUT (RANK_WEIGHT_ARRAY , WINDOW_SIZE): N
1]
RN

\
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FILE: FILTER FULL A1 FTD COMPUTING FACILITY

CALCULATE(GA!N.VINDON_SIZE.TIME_UEIGHT_ARRAV.RANK_UE!GHT_ARRAY);
for 1 := 1 to WINDOW_SIZE do
RANK_VEIGHT_ARRAYT.!.) :® RANK_WEIGHT_ARRAY(.I.)/GAIN;

ond;
end; (= of case statement *)

writein(’'Would you like to see the coefficients(i-yes,0-no)?’);
readin(l);

it 1 = 1 then

SHOW( TIME_WEIGHT _ARRAY,RANK_WEIGHT_ARRAY ,WINDOW_SIZ2E):

writeIin(’Would you 1ike to change anything(1-yes,0-no)?’):
readIn(ANS);
while ANS = {1 do
begin
writeln(’which set of coefficients 1->time, 2->rank’};
readin(CHOICE);
case CHOICE of
1 : MODIFY(TIME_WEIGHT_ARRAY,WINDOW_SIZE):
2 : MODIFY(RANK_WEIGHT_ARRAY,WINDOW_SIZE):
end;
SHOW (TIME_HEIGHT_ARRAV.RANK_UEIGHT_ARRAV.UINDOW_SIZE);
writein(‘'Change anything else(t-yes,0-no)?’);
readin{ANS);
end;

end; (= of GET_PARAMETERS *)

(l'“.-‘.‘l'.l“".“‘..‘.'I...‘C.l'..."”’.”"‘..-.'..-'.‘-‘...-‘l.‘)

(» *)
5' procedure INITIALIZE *)
» )
(= This procedure initializes the buffer window by reading the =)
(» first data value and using it to fil1l the first half of the *)
(» window and then fi11ing the rest of the window with the *)
(= subseguent data values read out of the data file. *)
(= *)

(-‘-"‘...‘.““-".-“..‘l.“'..‘..".l-..-.lt"--“‘t..'----.-.-‘-t..)

procedure INITIALIZE ( WINDOW_SIZE : INTEGER;
var OLDEST_VALUE : DATA_ELEMENT_POINTER):
var

ELEMENT,

NEXT_ELEMENT : DATA_ELEMENT_POINTER;
DUMMY : REAL

x'
MIDDLE_OF_WINDOW : INTEGER:

begin (= of INITIALIZE *)

new( ELEMENT) ; (* allocate dynamic variable *)
OLDEST_VALUE := ELEMENT:

read(DATA_SAMPLES,DUMMY , ELEMENT® .ACTUAL_VALUE): (* read 1st value *)
MIDDLE_OF_WINDOW := round(WINDOW_SI2E/2); (* find middle of window *)

for 1 := 2 to MIDDLE_OF_WINDOW do (= £111 1st half of window *)
pegin
new(NEXT_ELEMENT);
ELEMENT@ NEXT_IN_TIME := NEXT_ELEMENT; (* 1ink data values *)
ELEMENT :o NEXT_ELEMENT;
ELEMENT® . ACTUAL_VALUE := OLDEST_VALUEe .ACTUAL_VALUE:
oend;

for 1 := (MIDDLE_OF_WINDOW + 1) to WINDOW_SIZ2E do (* read in data *)
begin (* for last half of window *)
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FILE: FILTER FULL A1 FTO COMPUTING FACILITY

new(NEXT_ELEMENT);
read(DATA_SAMPLES ,DUMMY ,NEXT_ELEMENT® . ACTUAL_VALUE);
ELEMENT® .NEXT_IN_TIME := NEXT_ELEMENT;
ELEMENT := NEXT_ELEMENT;

end;

end; (= of INITIALIZE *)

(......-‘..l.-‘.-‘-l“""‘.'-‘il“.‘..-.“.‘“‘l‘.lll."‘tl‘.....-.-‘.)

(= . =)
(* procedure WEIGHT_TIME_BUFFER ")
(* *)
(= This procedure weights sach of the elements in the time odered *)
(= buffer by the user input values stored in the TIME_WEIGHT_ARRAY*)
(= *)

(‘..-.‘.‘-.“..‘.‘.‘..“.."l.-l“'l-..'..."..--l.‘-.“"l-l..‘"“.‘.)

procecure WEIGHMT_TIME_BUFFER ( WINDOW_SIZE : INTEGER;
OLDEST_VALUE : DATA_ELEMENT_POINTER:
TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE ):

var
1 : INTEGER;
ELEMENT : DATA_ELEMENT_POINTER;
begin (* of WEIGHT_TIME_BUFFER =)
ELEMENT := OLDEST_VALUE;
for I := 1 to WINDOW_SI2E do
begin
ELEMENT® .MODIFIED_VAL := ELEMENT®.ACTUAL_VALUE *
TIME_WEIGHT_ARRAY(.I.);
ELEMENT := ELEMENT® .NEXT_IN_TIME;
end;
ena; (* of WEIGHT_TIME_BUFFER =)

(l.“...-.l-...'.‘.-““.'...-.“'.‘“....-.'"..‘.-.“.l'.l..l-‘l-.'l.)

(= *)
z‘ procedure RANK_ORDER *)
L] .)
(= This procedure taxes the window that has been modified by the *)
(* tine weights & uses an insertion sort to rank order each of tne*)
(= eliements. At the end of this procedure sach element in the *)
:‘ window is ordered by size of the value as well as in time. -)
» .)

(..“.‘.-..“‘.‘......-l‘..-.‘....‘.......‘...‘l“‘..“.Q‘---‘l...““.)

procedure RANK_ORDER ( WINOOW_SIZE : INTEGER;
var OLDEST_VALUE : DATA_ELEMENT_POINTER:
var SMALLEST_VALUE : DATA_ELEMENT_POINTER);

var
ELEMENT,
NEW_ELEMENT : DATA_ELEMENT_POINTER;
1 : INTEGER;
begin (= of RANK_ORDER *)
SMALLEST_VALUE := OLDEST_VALUE; (* start with first value as *)

SMALLEST_VALUE® .NEXT_LARGEST := ni1; (* smallest and insert each *)
NEW_ELEMENT := OLDEST_VALUE®.NEXT_IN_TIME; (* 18t new valu to insrt*)
for 1 := 2 to WINDOW_SIZE do (* Joop through each value *)

in (* check 1f new valu<sma)lest®)

ELEMENT :» SMALLEST_VALUE: (* value tn order *)

i¢ NEW_ELEMENT® .MOODIFIED_VAL < SMALLEST_VALUE® MODIFIED_vAL
then begin
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NEW_ELEMENT® .NEXT_LARGEST := SMALLEST _VALUE:
SMALLEST_VALUE := NEW_ELEMENT;
end
else (* else find proper order *)
begin
while (ELEMENT® NEXT_LARGEST <> nil) and
(NEwW_ELEMENT® .MODIFIED_VAL >
ELEHENT..NEXT_LARGESTO.ﬂOD!FIED_VAL) do
ELEMENT := ELEMENTO.NEXT_LARGEST;
(* and insert in place *)
NEW_ELEMENT® .NEXT_LARGEST := ELEMENT®.NEXT_LARGEST;
ELEMENT® .NEXT_LARGEST :s NEW_ELEMENT:

end;
NEW_ELEMENT := NEW_ELEMENT® NEXT_IN_VIME; (* then go on to *)
end; (* fnsert next eimnt tn order®*)
ond; (* of RANK_ORDER .)

(‘......'.‘.-..l‘-‘..'....".‘...“....‘“-‘..."“““““"...‘."...)

(= *)
(= procedure WEIGHT_RANK_BUFFER .)
(= *)
(= This procedure weights each of the elements in the time odered *)
(* buffer by the user input values stored in the TIME_WEIGHT_ARRAY®*)
(* *)

(....‘...".‘.‘.'..‘-.“‘.-..."“..'.‘....-.....‘-‘-.-"-.‘..."l‘"'l)

procedure WEIGHT_RANK_BUFFER ( WINDOW_SIZE : INTEGER;
SMALLEST_VALUE : DATA_ELEMENT_POINTER;
RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE );

var

I : INTEGER;
ELEMENT : DATA_ELEMENT_POINTER;

begin (* of RANK_WEIGHT_BUFFER =)

ELEMENT := SMALLEST_VALUE:
for 1 :s 1 to WINOOW_SIZE do
in
ELEMENT® .MODIFIED_VAL := ELEMENT®.MODIFIED_VAL *
RANK_WEIGHT_ARRAY(.I.):
ELEMENT := ELEMENT®.NEXT_LARGEST:
end;

ond; (* of RANK_WEIGHT_BUFFER =*)

(......'...‘........"..".....“.“.."..-.'....‘.-‘.‘..-“---..‘...")

(= ')

(* procedure FILTER *)
(= *)
(* This procedure finds the middie value of the time sequence, =)
(* which is the 1nput to the filter, and sums the values of the *)
(= order sequence. the filter output., and sends the two values *)
(e back to the main program to be stored in a graph file. -)

(e *)

(......‘..........‘....‘."‘..‘.........‘...‘.‘..‘..-’....-‘...."-‘-.-)

procedure FILTER ( WINOOW_SIZE : INTEGER;
var OLOEST_VALUE : DATA_ELEMENT_POINTER:
var SMALLEST_VALUE : DATA_ELEMENT_POINTER;
var FILTER_INPUT : REAL:
var FILTER_OUTPUT : REAL);

var

1,
MIDOLE_OF_WINDOW : INTEGER:
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FILE: FILTER FULL A1 FTD COMPUTING FACILITY
INPUT_ELEMENT,
OUTPUT_ELEMENT : DATA_ELEMENT_POINTER:
begin (* of FILTER *)

MIOOLE_OF _WINOOW := round(UINOOV_SIZE/z):
INPUT_ELEMENT := OLDEST_VALUE;
OUTPUT_ELEMENT :s SMALLEST_VALUE:;
FILTER_OUTPUT := O:
for I := 1 to WINDOW_SIZE do (* step thru window to calc *)
begin (* output *)
1t I < MIODLE_OF_WINDOW then (* f1lter input is miadie val®)
INPUT ELENENT :® INPUT_ELEMENT® .NEXT_IN_TIME;
FILTER OUTPUT L FILTER OUTPUT + OUTPUT ELEMENT® . MODIFIED _VAL;
OUTPUT_ELEMENT ;s OUTPUT _ELEMENT® .NEXT_ LARGEST
end;
FILTER_INPUT := INPUT_ELEMENT®.ACTUAL_VALUE;

end; . (= of FILTER *)

(‘-‘-‘-“‘."“..‘-‘.‘.‘...-..‘.."-"..‘.‘..-...‘-"...O..'..‘.‘.‘....)

(= *)
(= procecure STEP_ONE *)
(» *)
(= Step the window over one data value by deleting out the oldest °)
(= value from the time ssquence and then creating .)
(* a new dynamic variable, reading in its new value, and .)
(» tnserting 1t at the end of the time sequence. *)
(= *)

(‘.“-"..-'..-l..l"......“..“...".‘.‘.'.-‘.-...‘.O.‘.-‘l‘..“'..'.)

procedure STEP_ONE (var OLDEST_VALUE : DATA_ELEMENT_POINTER;
ENO_OF OATA : BOOLEAN);

var
DUMMY : REAL:
ELEMENT,
TARGET_ELEMENT : DATA_ELEMENT_POINTER;
begin (e of STEP_ONE ®)
(= = = » delete Cldest value from window * = * @*)

TARGET_ELEMENT := OLDEST_VALUE;
OLDEST_VALUE := OLDEST_VALUE® .NEXT_IN_TIME: (* aslete from time $8q°)

dispose( TARGET_ELEMENT); (* ge-a)locate aynamic varpl *)

(* = » » put new element iNto window * * °* °*)

new{ ELEMENT) ;
TARGET_ELEMENT := OLDEST_VALUE; (* start at beginning to fing®)
repeat (* the most recent value *)

TARGET_ELEMENT := TARGET_ELEMENT® NEXT_IN_TIME:
until TARGET ELE”ENTO NEXT _ N _TIME = ni;

TARGET_ ELEMENTe. NEXT_IN_ TIME T« ELEMENT; (* ag0g new value *)
ELEMENTS . NEXT_IN_ TIME :» ntl; (® ana put nil value on enad *)
1f not(END_OF_DATA) then (* 1f st1)) cata values left °*)

read(DATA_SAMPLES ,DUMMY . ELEMENT® ACTUAL_VALUE) (° resa new value®)
else (* else put last data val in *)

ELEMENT® ACTUAL_VALUE := TARGET_ELEMENT® ACTUAL_VALUE: (°* buffer®)

end; (e of STEP_ONE *)

t"?.-.‘....‘...‘...‘.."...‘.‘..‘.........‘............................)

D00

" ..d' -"\¢’~f d‘ b

Nl n.* ol | . f LG '( ) "~ o \J',_ ‘ .. .. ,;- o

148

.....
Py ‘z

WA Y

9




P N U T O ST S U BT D B B B O B POt SO D W PR B . T D o R T R Py e P T TV PV IV WUy

FILE: FILTER FULL At FTD COMPUTING FPACILITY

149
(e
(e MAIN PROGRAM

®)
°)
*)
(* The matn program first itnittalizes the terming! for nput sna *)
(* output and then gats the NECESSary pParsmeters to run the progras °)
(= from the user. The data file is cpened and f1!tered and the *)
(" results are stored i1n a file to be graphed lster *)

®)

*)

('..'..“‘....‘..“O.........‘...‘...‘...................‘.'..'.......

begin
termin( INPUT); (* open tersinal for input *)
termout (OUTPUT); (* open terminal for output *)

GET_PARAMETERS (WINDOW_SIZE, TIME_WEIGHT _ARRAY  RANK_WEIQGHT _ARRAY) .
reset(DATA_SAMPLES, ‘name=SIGNAL PDATA.*');
readin(DATA_SAMPLES ,DUMMY , COOED_FILE_SIZE);
DATA_FILE_ST2E :* round(1000 * CODEO_FILE_SIZ2E):
rowr1ite(GRAPH_ FILE.‘M-GRAPH POATA *' ).~
INITIALIZE(WINDOW_SIZE.OLDEST_VALUE):
END_OF_DATA := FALSE:
for I := 1 to DATA_FILE_SIZE do
begin
WEIGHT_TIME_BUFFER(WINDOW_SIZE .OLDEST_VALUE, TIME_WEIQGMT _ARRAY);
RANK_ORDER(WINDOW_SIZE,OLDEST_VALUE.SHALLEST_VALUE):
WEIGHT _RANK surrsn(vxuoou SIZE.SMALLEST_VALUE. RANK_WEIGHT_ARRAY) .
FILTER(WINDOW_SIZE .OLOEST_VALUE,SMALLEST vaLue, riLFen_twour,
FILTER_OUTPUT);

writeIn(GRAPH_FILE.1,’ ‘', FILTER_INPUT, ‘' FILTER_OUTPUT):
¢ 1 >= (DATA_FILE_SIZE - round(WINDOW_SIZE/2) + 1) tnen )
END_OF_DATA := TRUE; .
STEP_ONE(OLDEST_VALUE, END_OF_DATA);
end;
[ 17-
»
1)
1
-
L
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150 }
|..............‘.............0...0.0.0...'........D...........I........) ':
(e *) »
(g progres NSt *)
[ *) b
(R This prgram csicviates the noras! 12e0d Reen square error (NMSE) *) b
(* one noras) 1208 oversge orror (NAL) betwesn two dsts files Csre °) N
(* @Sust B9 taken tO INBUre which f11@ is the 1deal fi1le to be used *)
(* o8 the reference fer norma!ization This Pprogras 8150 PENerstes °) X
(e two f1108 to graph iater One ft1e conta:ns DOth signals thet *) y
(e NG Orrer woe C8'CuisteU DEtwesn any the other file containe *)
(e the €17f0rense BOtween the two Signa’s *)
(e . .
(.l.‘..‘.‘.‘............‘.....................".....O....'.‘...'.'....: ‘.
progres WSE (INPUT QUTPUT), Py
KINCLUDE CNg ',
)
var
l. 4
(= 1 {< A
A . -
NUN_SANPLES  INTEGER: o
oustY _2 . \
ID€AL_vaLut. »
ACYTUAL _vaLut.
O1FF . .
NNSE_NORM .
NAE_NORM "
NaE >
s REAL: N,
FILEA, .9
#ILEC, -
FILED.
2% { ] . TEXT, N
Degin ;
tormin( INPUT) ; o,
tormout(OUTPUT)
CHS('CLRSCRN . 1)
writein( 'Caliculate the NMSE and NAE Detween the'); )
writeIn( - 1) iaea) signal and noise corrupted signal’); ")
writein( -’ 2) 'aes! signal and filter output’): s
writein(’ J) filter 1nput and output‘); =~
writein(- 4) 1088) ana MOC1fied frequency response’); ;
writein(: S) X(w) ana Y(w)'); bt
resd)In{CHOICE) . 2
cese CHDICE of -

1: begtn
reset(FILEA, ‘name=IDEAL .POATA . *'); W
reset(FILES. namesSIGNAL .PDATA.*’); )

ong; ol

2. obegtin '|'
reset(FILEA, 'name=IDEAL .PDATA.*'); ¥
reset(FILEB, 'name=GRAPH .PDATA *'); X

ong;

3: begin .
reset(FILEA, ‘name=SIGNAL .PDATA *'); -.
reset(FILES. 'name=GRAPH .POATA.*'); )

end; !

4 Dpegin .\
reset(FILEA, ‘name=IDEALRES PDATA . *'); W
reset(FILES, ‘name=FREQ.PDATA . *'); \

ong; >

5. Dbegtn -
reset(FILEA, ‘'name=FREQX .PDATA . *');
reset(FILES. ‘'neme=FREQY .PDATA.*'); =

ong; :.

otherwise o

writein('That 1s not an option’); -l
<
~
o
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151 2
ond;

NMSE := O: -
NMSE_NORM := O; -

NAE := O;

NAE_NORM := O; \
1 CHOICE < 4 then #d
begtn )

readin(FILEA,DUMMY ,DUMMY_2): A
NUM_SAMPLES := round( 1000 * DUMMY_2); o
ond;
1 CHOICE = 1 then L
read\n(FILEB,DUMMY ,DUMMY_2); S
revwrite(FILEC, ‘'NnamesCHANGE .PDATA.*); hAY
rewr1te(FILED, ‘name=DUALRESP .PDATA.*); t
case CHOICE of ey
1: for 1 :s 1 to NUM_SAMPLES do o
begin tf
readIn(FILEA,DUMMY , IDEAL_VALUE): u
readin(FILEB,DUMMY ,ACTUAL_VALUE): !
DIFF :» IDEAL_VALUE - ACTUAL_VALUE; N
NMSE := NMSE + sqr(DIFF); . .
NMSE_NORM := NMSE_NORM + sqr(IDEAL_VALUE); ‘,

NAE := NAE + aps(DIFF);
NAE_NORM :® NAE_NORM + abs(IDEAL_VALUE): Py
writeIn(FILED,DUMMY : 4, JIDEAL _VALUE: 15:8,ACTUAL_VALUE: 15:8);
writeIin(FILEC,DUMMY :4 ,DIFF:15:8);

L -H L
2,(* 20r 3 *) gt
3: for I := 1 to NUM_SAMPLES do o

begin N

resdIn{FILEA,DUMMY  IDEAL_VALUE); I

readIn(FILEB, DUMMY ,DUMMY_2  ACTUAL_VALUE); .

writeIn(FILED,DUMMY :4,IDEAL_VALUE: 15:8 ,ACTUAL_VALUE:15:8); )
Lt

DIFF :s IDEAL_VALUE - ATTUAL_VALUE;
writeIN(FILEC,DUMMY :4 ,01FF:15:8);

NMSE :» NMSE + sqr(DIFF);

NMSE_NORM := NMSE_NORM + sqr(IDEAL_VALUE);

NAE := NAE + aps(DIFF);

L

>

NAE_NORM := NAE_NORM + abs(IDEAL_VALUE); Py
end; \
4,(* 4 or 85 ) !
5: begtn r
writeIn(‘Are the frequency files in dB(1-yes,0-no’); N
readin(ANS); "
while not(eof(FILEA)) do ™
begin &
resdin(FILEA,DUMMY, IDEAL_VALUE); ol
readin(FILEB,DUMMY ,ACTUAL_VALUE); y X
writein(FILED,DUMMY:4, IDEAL_VALUE: 15:8 ,ACTUAL_VALUE:15:8); N
if ANS = 1 then .
begin =
IDEAL_VALUE := exp(1DEAL_VALUE*1n(10)/20.0); \
ACTUAL_VALUE := exp(ACTUAL_VALUE*In(10)/20.0); )
ond; o
DIFF :e IDEAL_VALUE - ACTUAL_VALUE; Bt
NMSE := NMSE + sqr(DIFF); O
NMSE_NORM := NMSE_NORM + sqr(IDEAL_VALUE); &Y
NAE := NAE + abs(DIFF); -
NAE_NORM := NAE_NORM + abs(IDEAL_VALUE); -
writeln(FILEC,DUMMY:4,DIFF:15:8); -
end; N
: \
end; o
end; "N
NMSE := NMSE / NMSE_NORM; .,‘u
NAE :» NAE / NAE_NORM; o
writeIn(’'The normalized MSE is’ NMSE:15:8); g
writein(’'The normal ized average error is’',NAE:15:8);
end :\
Y
§-‘
L!
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FILE: MEGA2 FULL A1 FTD COMPUTING FACILITY 152
('..-.“'.“‘“‘."“‘.‘..“-.-..‘.‘.‘l--“..‘.'.‘.‘..‘.l.-...“.."..‘)
(U..““...-‘.'-“.--"'.‘..-.“‘.““‘..'.l..""“.-"“..‘.‘....“-.) l'
(= *) [
(= program MEGAMEDIAN ) b
(* *) ‘n'.
(* This program implements a series of procedures which wil) .) ",n
(* create a set of data, filter it and then generate the transfer *) ."
(* function for the filter. The program will loop through several *) '«':
(= runs and average the results to get a better approximation .) s,"
(* to the transfer function if a random input to the filter is *) o
(= used. *)
(= ») . )
(= The program has the following filter types already ) et
(= implemented: *) Y
(= - mean filter *) ‘>
(= - median f1ilter ) -
(* - alpha-trimmed mean filter (ATMF) s) o
(= and the new filter we are trying to characterize: the *) .
(= - alpha-trimmed linear filter (ATLF) .)
(= *) ,'p
(= .) ‘l.
(*  PROGRAM VARIABLES : *) I
(* *) ,0‘:
(= SIGNAL : This array holds the values of the signal to be *) ‘
(= filtered. .) ‘s
(* .} -
(* FFTX_MAG, o ) i
(* FFTY_MAG : The magnitudes of the FFT of the tnput signal (X) «) i
(* and the filter output (V). *) L
(* ) -"
(* Tyx_MAG : The transfer function of the filter obtained *) o
( using the cross power spectrum s Pxy/Pxx. .) o
(= .)
(= Tyx_SUM : Array used to sum up the above variable in order .)
(» to average the result over a number of random *) -
(* inputs. *) by
(» *) .': A
(= SIGNAL_SI2E : The number of samples taken for sach signal. *) -
(= ) o
(* TRIALS : The number Of random trials toc average. °) o
(. .) '
(=~ I, *) <
(» J : Index variables. *) o~
(* *) . |:.
(* .) S
(= In this program the main procedures are set off by a single line °*) kY
(= of asterisks. Sub-procedures are set off by a single 1ine of *) A
(* dashes. Functions or other small procedures are set off by & *) &N
(» 1ine of alternating dashes and spaces. *) N
(* *) *
(* mMain ProCedures -> ***esssssssssnstasens .)
(o .) ...,
(= SUD-Proceures -> s--cesccececccccocna- *) R4
(* *) .
(* functions or other *) vl
(= small procedureg~> - = - - - - - = o = = .) o
(* *) e
(‘.‘.l"‘.“...‘..".“‘.‘.-...-.‘.‘..‘."."...‘...".‘.O‘.l.‘.‘.-"..) h
(....‘.‘..'.".".-.“‘.‘.'.“."...‘...‘"O“-U'."l.‘--..‘..‘.‘-.'...) °
program MEGAMEDIAN (INPUT,OUTPUT): N
%INCLUDE CMS -
type .
SIGNAL_TYPE = array(.-31..1086.) of REAL;
MEDIAN_TYPE = array(.1..128,1..%00.) of REAL; N
var A
-,
SIGNAL, R
FFTX_MAG, <
“'

e ',‘f_'} 'f ('I 'I.'-'.:o‘-'_;l
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FFTY_MAG,
Tyx_MAG : SIGNAL_TYPE;
Tyx_SUM  : MEDIAN_TYPE:
S!NL SIZE,
TRIALS,
SEED1,
SEED2.
JC
1 : INTEGER;
DUMMY : REAL;
DATE,
TING : ALFA;
CH : CHAR;

(..“........‘O“.‘O.“...l‘..“....'O-.O.‘..“‘........‘.‘..l.‘...‘l..)

(e *)
(e procecdure SORT *)
(= *)
(* This procedure 18 used to sort an array of SI2E elements into *)
(e orger. It is foung here at tne beginning of the program since °)
(e 1t 18 used n both the CALCULATE procedure (in FILTER) to sort °)
(e the slements of the TIME_WEIGNT_ARRAY into order so that the *)
(* gain factor may De csicuiated and in the MEDIAN_AND_PRINT *)
(e procedure to sort the 500 slements of the trensfer function st °)
(* sach of 286 points. .)
(= *)
(...O..O...OO..'......“O..‘....‘.......‘....‘.O.‘..O.......O......"..)
procegure SORT ( SIZE : INTEGIR;
var SORT_ARRAY : SIGNAL_TYPE )
ver
A,
1.
J : INTEGER;
ORDER : SIGNAL_TYPE;
begin
for 1 :*» 1 to SI12¢ o
OROER( .1 .) := 0.0:
ORDER( . 1.) :» SORY_ARRAV( .1t
for 1 :» 2 to $12¢t ao
1? SORT_ARRAY(.1.) < OROER(.1.) then
bDegin
for A :s (1-1) downto 1 do
OROER( A+t ) o ORDER( A
ORDER( . 1.) :» SORT_ARRAY(.1.);
ono
o)se
pegin
v '* 2,
while (ORDER( J.) <> 0) and (SORT_ARRAY(.1.) >
ORDER( .v.)) do
J eJ et
for A .» (1-1) acownto J oo
ORDER( . A+1.) :» ORDER( A );
ORDER( .u.) :=» SORT_ARRAY(.1.);
ong;
for I :®» { to SIZ2E do
SORT_ARRAY(.{ ) := ORDER(.I.);
ond;
"0‘....‘.......‘..‘.......0..‘.....‘.0‘...‘.0.0'..0...‘...O...O.......)
(e *)
:o procecure MAKEDATA °)
L] o)
(e This procecdure generates the inNput sequences to be filtered *)
(e Many different signal characteristics are posstible in this *)

“m ™
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(® procedure. They are outlined in the firgt part of the main body °*)
(* of this procesure. *)
(e *)
(O......O‘.‘l..."..‘.‘.‘.‘..O...O...‘OO.....O.........O..Q..........O.)

procecure MAKEDATA ( var SI1GNAL SIANAL_TYPE ).
conat

Pl * 2.1415026838808
MAX_NUN_SAMPLES © 1024

var

xOo8C»

DUSSEY _ U,

INITIAL_vAL,

siama_s5.

LEVEL

PROBINS

10PULSE_VALUE.
ster_orFser,
no1st_ampLITUDE  mEAL:
ANS,

1.

J.
FILE_CHOICE,

REQ. .
cnolcE,

START FREQ.
stor_Tago.

sran¥ _game,
stor_Sawe,

NUMSAMNP

NUNSTEPS

SIGN . INTEGER;
DONE : BOOLEAN;
DATA_SAMPLES : TEXT;

(* *)
(* function SGN *)
(o .)
(* This function returns the sign of the TEST_VALUE. This *)
(e 1s not available a8 an intrinsic Pascal function. *)
(* *)

(®c o = o o o 0 o a o c o a = = o o = =« = o = a = a e e e e e a0

function SGN ( TEST_VALUE : REAL ) : INTEGER;

pegin

SGN o 1
1 TEST_VALUE < O then
SAN e -1

ong;

begin (* of MAKEDATA *)

CMS('CLRSCAN’ . 1);
repeat
writeIn('Mow many samples to take (1024 recommended)?’);
read N(NUMSAMP ) ;
19 (NUMSAMP > MAX_NUM_SAMPLES) or (NUMSAMP < 1) then
writeIn{’'The number Of samples must De between 1 and 4096'):;
until (NUMSAMP > O) and (NUMSAMP <= MAX_NUM_SAMPLES);
SIGNAL_SIZE :» NUMSAMP;

Py
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for [ := ~31 to 1086 oo
SIGNAL(.I.) := O;

writeln;

writein( ‘BUILD A SIGNAL');

repeat

» R
UAALY "‘l A .l'.‘.l, ALY

writeIn('wnat would you like in 1t2°);
writein(’ 1) Constant level’);
writeIn(’ 2) Monotone ramps’);
writeln(’ 3) Stnusoias’);
writeln(’ 4) Steps’);
writeiIn(’ 8) Gaussian noise’);
writeln(’ ¢) Laplacian noise’):
writeiIn(’ 7) 1IR filter the signal’);
writelIn( '’ 8) That''s all’);
readin(CHDICE):;
case CHOICE of

1 : begin (* constant level *)
writein(‘'wnat shall the constant level be?’):
read'n(LEVEL):

1 LEVEL <> 0 then
for 1 :e 1 t0o NUNMSAMP do
SIGNAL(.T1.) := LEVEL:
ond;

2 : begin (= ramp *)
urnoln( what 1s the starting sample for the ramp?’);
readin(START_SAMP);
writelin( And the ending semple?’);
readain(STOP_SAMP) ;
writein(’'To what relative value should the ramp rise(fall)?’);
resdain(iLEVEL);

INITIAL_VAL :* SIGNAL(.START_SAMP . );
for 1 :» STAlT SAMP to STOP_ SAMP ao
SMNAL( 1.) ;s INITIAL_ VAL + LEVEL/sDS(STOP_SAMP-START_SAMP)®
(1-STARY SAv)
ond;

2 . pegin (* sines and blocks of sines °*)
writein(’'Input frequency of sinusiod i1n H2(O 1f group desired)’);
resdin(FREQ);
i1 PREQ <> O then
bDegin

writein( ‘'starting sample(O 1f all samples)?’);

read In(START _SAMP) ;

1? START_SAMP « O then

begin

START_SAMP :=& 1
STOP_SAMP := NUMSAMP;

ong

else

begin

writein( ‘ending sample?’):
readin(STOP_SaMP ) ;
ong;
for I :s START_SAMP to STOP_SAMP ao
SIGNAL(.1.) :o SIGNAL(.1.) + gtn(2°PI*FREQ*I/NUMSAMP) ;
ond
else
begin

writein(’vwnat is the starting frequency?’);

readIn({START_FREQ):

writein(’'what 18 the last frequency?’);

readin(STOP_FREQ);

for FREQ :* START_FREQ to STOP_FREQ do

for 1 :* 1 tO NUMSAMP do
SIGNAL(.1.) :® SIGNAL(.1.) ¢ sin(2°PI*FREQ®I/NUMSAMP)
ongd;
ond;

4 : begin (e steps and impulses *)
writein('How many steps in the signal?’);

T TN B AN S DR
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156 b

readIn(NUNSTEPS ) ; i

for J := 1 t0 NUMSTEPS oo h

begin

writein(’Input the starting sample for step’,J);

resdIn(START_SAMP); !

writein{‘'And the last sample?’); .

readin(STOP_SAMP) . !

writeIn(‘And the offset?’): o

readin(STEP_OFFSET); 'y

for 1 :o START_SAMP to STOP_SAMP do %

SIGNAL(.I.) :» SIGNAL(.1.) + STEP_OFFSET;

ond; .

ona; -

S : begin (* Gaussian noise *) o

writeIin(‘'what shall the noise s1gma squared be (gaussian dist.)?’);

writeIln(’'Sigms squared?’);

readin(SIGMa_SQ):

for I := 1 t0 NUMSAMP oo 4
begin .,

random(0):

sqre(-2.0° SIGMA_SQ * 1n(V)); 3

random(0) ; 0

2.0 * P1 * V;

e« R *» cos(0); )

IGNAL(.3.) := SIGNAL(.1.) + X; Y,

-~axXO0OCHC

ond
ond; 2

¢ : begin (* Laplactan(impulisive) notse*)
writein( 'wnat shall the probability of an impulse be?’): \
read ' n(PROBINP) ;
1f PROGINP > O then
tn
writeIn(’'Do you want 1) al! positive impulses or 2) both negative’,
' and positive impulses.’):;
readIn(SIGN);
1 SIGN = 2 then
SIGN :» -1;
writein( 'wnat shal! the impuise standard deviation be?’):
readin( IMPULSE_VALUVE);
for J :® 1 to NUMSAMP go
Degin
U :e ranadom(0);
17 U <s PROBIMNP then
begin .
U :» random(0);
X :® ~(IMPULSE_VALUE/sart(2))*in(1-U); \
SIGNAL(.J.) := SIGNAL(.J.) * X * SGN(random(0) + h
(0.% = SIGN));

NI o BB g8

ong;
ong; 0
ond; \{]
ony; ¥
»
7 : pegin (* simple IIR low pass filter®*) ]
writein( 'what 18 the parameter ALPHA?’); ‘,
readin(A); ;
for 1 := NUMSAMP aownto 2 a0
SIGNAL(.I.) :* A*SIGNAL(.I-1.) + SIGNAL(.1.);
ong; N
K.
[ N .
DONE : = true:;
OTHERWISE (* g0 nothing *)
writeIin(’'That is not an option’);

]
ong; (* of Case statement *) :
CMS('CLRSCRN’ ,1); ’

+
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until DONE; )

ond; ( of MAKEDATA *)

-
-~

(...“.-‘..‘.‘...-..‘.....‘....-“".'l‘“".l“'.-‘....-."'..‘.'.-'.')

LI r

(* *)
(= procedurs WINDOW *) !
(= ) ]
(* This procedure windows the input data to the filter with the *) X
(* B8Slackaman window. This window 18 given by .) K
(‘ ') :
(= win) = 0.42 - 0.5cos(2nP1/N-1) + 0.08cos(4nPi/N-1) .) ';
(* *) o
(* where N-1 s the signal size. *) K
(* *) s
(...‘-."...“‘...“.--..‘-l‘."..‘..‘..“...‘.‘--.".'..“".".."...)
procedure WINOOW ( var SIGNAL : SIGNAL_TYPE ); ig
N
const '.‘
v i)
PI = 3.1415926535898; o
P "
var o \J
MODIFIER : REAL: i
1 : INTEGER: »
!
begin
for I := 1 to SIGNAL_SIZE do ““‘
oegin Y
MODIFIER :* 0.42-0.5*cos(2*PI*I/SIGNAL_SI2E)+0.08*cos(4*PI=*1/
SIGNAL_SIZE); b
SIGNAL(.1.) :s SIGNAL(.I.) * MODIFIER; Ry
end; . >
ond; :z
o
(...‘....‘..“‘....-.....‘..l"t......--.'.l..-..-...".....'-..‘.‘-".) ;(
(* =) P
( procedurs FREQ *) b
{* *) ‘)
(* This procedure takes the discrete Fourier transform (OFT) of the *) 7~
(* signal given to it. The DFT is implemented by the decimation-in-#) o
(» frequency FFT algorithm. '; -
(- L3
(‘....'......‘.“.".--.“..‘..“‘-..-‘.-.‘.-.'.-'.l..‘..."-“.-“‘...) ot
procedure FREQ ( SIGNAL : SIGNAL_TYPE; Y
var FREQX : SIGNAL_TYPE): ~ !
ﬁ
const .'»i
3, 4
. 5
Pl = 3.1415926535898; N
MAX_ARRAY_SIZE = 2048; : _
var ',‘:‘»
LN
DUMMY , .
I, 0
J' "‘
"0
No
L. v
NV2, o
N1, N,
1P, ~
LE, 3
K : INTEGER:;

r

NP - . TN
XS - \ \#._n\iI‘vn'.y..y',n’fd'ln'\q‘.‘.‘\)_J’\J'\J*\I‘-' SECIR .». N ALACHS .._ N ,—
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LARGEST,
TEST, .
LE1, t
UR,
vl, g
WR, s
wi, d
TR, c
TI. . !
TMR, vy
™? : REAL; (1
MAG, .
PHASE ., ¢
XR, &
X1 : array(.1..MAX_ARRAY_SI2E.) of REAL: e
4
(Se = o e e e e e S &y
(* .) Y
(= function RAISE *)
(» ‘) Yy
_(* This function raises A to the integer power N. This function is *) y
(* not intrinsically available in the Pascal compiler. '; “t
. .
}o------.------------ ..... e e = ® e == .) :‘4
function RAISE ( AN : INTEGER ) : INTEGER: "
()
var
A
TEMP, ¢
1 : INTEGER; N
N
\.
begin \
TEMP := 1; N
for 1 := 1 to N do
TEMP := TEMP * A; ”
RAISE := TEMP; 9
'
ond; Ry
K
)¢
pegin (= of FREQ *) 5
)
N := SIGNAL_SI1Z2E: N,
for 1 :*» 1 to N oo :
begin
XR(.1.) := SIGNAL(.I.); S
X1(.1.) := O: s
ond; \{
M= 0 (* calculate M .)
TEST := N;
repeat -
TEST := TEST/2: R3¢
Mo My, o
until TEST <= 1; ‘s
1 TEST < 1 then by
for 1 := N+t to RAISE(2,M) go (* length /=2**M, pad with O *) 1y )
XR{.1.) := 0.0;
N := RAISE(2,M); ™
for L :» 1 to M do (* calculate FFT *) ot
vegin ;~
LE :» RAISE(2.Me9-L); o'
L!‘ .. LE / 2-0: .\
UR ;= 1; ‘\u
Ul := 0O; |
wR := cos(Pl/LEY);
®i := -g1n(PI/LEY); ~
for J := 1 to round(LE1) do h,
begin \.
for X := round{(J-1)/LE) to round(N/LE) ao '
F
..0
=
Y

)
'Y .y - P - R T T T R L Y - TR ~nan . - o«
‘o '. " I AT » \\. ten b .}\\ s 5\ TR AT ',. Iy f:. ‘,_.\,Q. " a9 * _\-* Vo 15 T

N )



»”

KR X T A 3 e DL TSR UK U PR % 8.0 8 8 . b .88 b'a 2% £% 1%2'R%" Ao abav 2 tal ol *

FILE: MEGA2 FULL A1 FTD COMPUTING FACILITY

begin
1 := K®LE + J;
it 1 <3 N then
begin
IP := I + round(LEt);
TR := XR(.1.) + XR(.IP.);
TI := XI(.1.) + XI(.IP.);
TMR :axR(.I.) ~ XR(.IP.);
TMI := XI(.I.) - XI(.IP.);
XR(.IP.) := TMR®UR - TMI®UI;
XI(.IP.) := TMR*UI + TMI®UR;
XR(.1.) := TR;
X1(.1.) := TI;
end;
end; (* NEXT K *)
TR := UR*WR - UI*WI:;
Ul := UR*WI + UI*wWR:
UR := TR;
end; (* NEXT J *)
end;: (* NEXT L *)
NV2 := N div 2;
NMt :® N-1;

J s 1
for I :* 1 to NMY do
begin
i1t I < J then
begin
TR := XR(.1.);
XR(.I.) := XR(.J.):
XR(.J.) := TR;
Tl := X1(.1.);
X1(.1.) := XI1(.J.);
X1(.J.) = TI;
ond;
K := NV2;
while K < J do
begin
J s J=K;
K := K giv 2;
ond;
J e Yok

end; (* NEXT I ¢)

for I := 1 to N d©
begin
MAG(.1.) := gqrt(sqr(XR({.1.)) + sqr(Xx1(.1.)));
PHASE(.I.) := 0.0:
1 XR(.1.) <> 0.0 then
PHASE(.1.) := arctan(XI(.1.)/%XR(.1.)) *» 180 / PI;
1 XR(.1.) < 0.0 then
1 X31(.1.) > 0.0 then
PHASE(.1.) :» 180 + PHASE(.1.)
else
PHASE(.1.) := -180 + PHASE(.1.)

(* calc mag & phase of DFT

end;

for I := 1 to SIGNAL_SIZE ao
FREOX(.1.) := MAG(.1.):

ong; (= ot FREQ

159
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*)

Purpose : This program was 0esigned tO 1mplement a penera)ized® )

aigital fiiter according to the following scheme.

Once a window si1Ze Nas been chosen the user 18 asked to
sSupply the requested weighting values Or choose 8
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(e predef ined set for either the time or rank weights. .) N
( .) '
( *)
(= *) 'y
(* time Ordered c - --ccccccccccccc=s .)
(* tput ==> | | | ... | | *) ’
(o ........ PR P — .) 4
(* t ot 1 * ) :
(* A(1)-0 -0 -0...A(n)-0 *) \
(= Tt *t ¢ t *) u
(‘ cocvocncccccceaa cosae .)
(= | SORT | *) v
(o [ i R .) ,
(* T ot ot * *) !
(= 8(1)-0 -0 -0...8(n)-0 °) ‘
(» T t 1 * *) h
(o cvescvsssecssncrcasee .)
(* | ¢ <« ..e.. ¢ | = output *) M
(. comecscsvcen: wssese )
(e *)
(* The procedure then opens the external date .) :
(* file where the values of the sampled *)
(* signal to be filtered are and initializes the window. °*) Ny
(= Initializing consists of fil1ling the first half of the*) "
(= wingow with the first data value and then reading in °*)
(* subsequent values until the window is filled. WNext .)
(e the window is weighted by the W() set of coefficients *)
(e The wingow is then rank ordered. After this the *) ~
(= second set of coefficients are app)1ed which trim off *) \
(* the smallest and )argest values of the dsta *) _ N
(* After this last trimming the remeining samplies are *) -
(e summed and gain adjusted. Finally, the e) &
(* Window 18 StePPed Over ONe Value (N tiee Dy asleting °) !
(e the oldest value and inserting the new value '‘n the °) .
(» proper rank order. The filtering and stepping *)
(e continue until the end of the aata file 18 reached *) .
(. .) ~
("‘..‘....O.......-.“....‘...‘..‘.O‘........Q.......'.-.......l......) \.
procecure FILTER ( var SIGNAL : SIGNAL_TYPE ). N,
const ~
MAX_WINOOW_SIZE = 64;
type -
-
DATA_ELEMENT_POINTER = GDATA_ELEMENT; -~
OATA_ELEMENT * record S
ACTUAL _VALUE  REAL; :
woDIF1ED_vaL  mgaL: y
NEXT_LARSEST OATA_ELENENT_POINTER.
NEXT_IN_TINE OATA_ELEMENT_POINTER
ong: >
WEIGHT _ARRAY_TYPE * array( 1. MAX_WINDOW_SIZE | of ®€AL. <
var ;\
N
TEnP : arrayl 1. 1024 ) of REaAL. L)
SMALLEST_VALUE.
OLDEST_vaLut : DATA_ELEMENT_POINTER: N
1. 5
wINDOW_S12€ : INTEQER; N
FILTER_INPUT, >
FILTER_QUTPUT © REAL: O
TInNg_wE1eMT_ammay, "3
RANK_WEIQMT_ARRAY : WEIGHMT_ARRAY_TVYPE; ¢
(.-o----.o..-o-o—on--OQ----.--.-----. ................................. .) ’:
(. e) :\
(* procedure GET_PARANETERS *) R
(o LY N
Y

AR S £ £ AN TS
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(* This procedure returns the user input parameters that will be *)
(e used auring the program run. *)
(e *)
(®eccsccccanccancvnnccanconnas cemcnccccmcane coreew cocorseccencsscannencne *)
proceaure GET PM!A&ETE!S ( var UIM‘)OV SI12€ INTEGER;
var TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE;
var RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE);
var
ANS |
CHMOICE,
H INTEGER;
CMHECK ,
VALID_S12¢ SOOLEAN;
GAlIN,
Uy REAL ;
COEFF_FILE TEXT;
(.- - e e ® e B e w w e e wm e ® ® e e ® e & ® & = - - e ® e e - - ® - l)
(e *)
(e procedure RANUAL_INPUT ';
(. -
(e This proceture lets the user 1nPut the weighting *)
(e confficients tO DO uSed. *)
(e ‘)
(®e = & o @ o = @ = = = = « = . o ® & ® w e = e @ e ® ® ® ® ® 2 - =« = -)
Proceture BANUAL_INPUT( var INPUT_ARRAY : WEIGHT_ARRAY_TYPE;
WINDOW_S12E INTEGER);
ver
1.
ANS INTEGER
sagtn
writ@int Ingut the eseired f1lter coefficients.’);
for | + ¢ to rouna(WINDOW_SI12E/2) do
sag'n
wrteIn( At (1 2 ) e 7)),
reeg! A INPUT_ARRAY( [ ));
ona.
writ@'nl [s the ¢1'ter syametric (1-yes.0-n0)7’);
rens ' " ANS )
¢or 1 + reurwividdOw_S128/2)ct to WINDOW_SIZE oo
'O AN o + thenm
IMPUT_ABRAY( 1 ) SINPUT_ARRAY( WINDOW_SIZE - I + 1.)
e'ee
sag»
wrrt@inl A( .1 2. ) = 7).
O~ INPUT _ARRAY( ] ),
e
e
(e~ - - v e e e e e e m e e m e mee e e eeeeeme. eem e ew - - = .)
. .)
e procesure DO_ALPHA_TRIM *)
{e ')
' TRigs precesure co'Culates the ruaber of elements to be *)
te tr'ame® of? of each ong ©f the rank weight array and O's them, *)
(e .)
{®= - - =+ « « o 4 o 2 o e = a4 = o ® = @ 2 =" o w ® e e = = -.----l)
Sreceture 00 _ALP_TRIE ( var AANK _WEIGHT _ARRAY WEIGHT_ARRAY_TYPE;

LR LYY Ty

v4, WA R

INTEGER) ;

winDOw_s12¢

- .. . -q‘_"-., ‘.-‘. .... .
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NUM_TRIMMED,
TRIM,
NUM_LEFT : INTEGER:
begin

writein(’Input how many slements to trim (must be even #))’);
readin{NUM_TRIMMED) ;
TRIM := NUM_TRIMMED div 2;
NUM_LEFT := WINDOW_SIZE - NUM_TRIMMED;
for I := { to TRIM do
RANK_WEIGHT_ARRAY(.1.) := O:
for I := TRIM+1 to TRIM+NUM_LEFT do
RANK_WEIGHT_ARRAY(.I.) :3 1;
for I := TRIM+*NUM_LEFT+1 to WINDOW_SIZE do
RANK_WEIGHT_ARRAY(.I1.) := O

end;
(n----------.- ...... - o e e e e e e e m .- > e " -
(-
(= procedure CALCULATE
(u
(* This procedure calculates the gain factor for the filter
(- coefficients so that the output is properly scaled.
(t

(.--— ------- - ® e e e e e e = e e = e = = EE A
procedure CALCULATE ( var GAIN : REAL;
WINDOW_SIZE : INTEGER;
TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE:
RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE);

var

A,

J.

b : INTEGER;

ORDER : SIGNAL_TYPE;

begin

for I := 1 to WINDOW_SI2E do
ORDER(.I.) := TIME_WEIGHT_ARRAY(.I.);
SORT(WINDOW_SIZE,ORDER);
GAIN := 0.0;
for 1 := 1 to WINDOW_SIZE o
GAIN := GAIN + ORDER(.I.) * RANK_WEIGHT_ARRAY(.I.);

end;
(o ------------------ - »® @ P ® ® m e o= - - . . . = -
(.
(* procedure SHOW
(e :
(e This procedure clears the screen and then provides a list
(* of the coefficients to the user.

(.

(®c = o ¢ 0 @ o @ @ @ o » = @ o o o @ 0 = == == - & ®w ® e = 2 ==

procsdure SHOW ( TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE;
RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE;
WINDOW_SIZE : INTEGER);

var

1 INTEGER ;

s0g'”
COS( CLASCAN' . 1);
write!n( 'TINE COEFF VALUE RANK COEFF VALUE'):;
ter I « ' to WINDOW_SI2E do
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writein(’ A(’,1:2,') o' TIME_WEIGHT ARRAY(.1.):12:8,
‘ B(',1:2.°) =’ ,RANK_WEIGHT_ARRAY( .1.):12:8);
end;
(‘---------------------. ------------ s)
(0 . o)
( proceaure MODIFY *)
( *)
(* This procedure modifies either the whole weight array or *)
(* indivigua) coefficient values that the user desires. *)
(= *)
(. ..... - - ® e e e > ® @ w ® e e * e ® m e ® e ® ® e ® e & = = = .)
procedure MODIFY ( var MODIFY_ARRAY : WEIGHT_ARRAY_TYPE:
WINDOW_SIZE : INTEGER):
var
I : INTEGER:
VAL : REAL;
begin
writein(‘Which element ( O-> all elements )‘);
readin(I);
1f 1 = 0 then
MANUAL_INPUT (MODIFY_ARRAY ,WINOOW_SIZE)
else
begin
writeIn(‘wnat is the new valua‘);
readin(VAL):
MODIFY_ARRAY(.I.) :e VAL;
end;
end;
begin (e of GET_PARAMETERS °)
CMS( ‘CLRSCRN’ ,1); . )
writeln;
writeIln(‘'This program implements & digital filter.’);
writeln;
repeat
writeln(’Input the desired window size(must be sn odd tnteger). ):
writeln;
read(WINOOW_SIZE):

VALID_SIZE := true;
if not(odd(WINDOW_SIZE)) then
begin
writein(’The window size must be an odd integer.’):
VALID_SIZE := false;
ond;
1f (WINDOW_SIZE > MAX_WINDOW_SIZE) or (WINOOW_SIZE < O) then
begin
writeln{’'The s1ze must be positive but less than ‘,
MAX_WINDOW_SIZE);
VALID_SIZE := false;
end;
until VALID_SIZE;
for 1 := 1 to WINDOW_SIZE do
begtn
TIME_WEIGHT_ARRAY(.1.) := O;
RANK_WEIGHT_ARRAY(.I.) := O;
end;

writein(’Would you 11ke to initialize a predetermined fiiter’);
writein(’({.e. a mean or median filter) or manually inmput the');
writeln(’'filter coefficients?’);

writeIn(’ 1) mean filter’);

writein(’ 2) median ftiter’);

writein(’ 3) alpha-trimmed mean filter’);
writein(’ 4) alpha-trimmed linear filter’);
writein(’ 5) other coefficient input’');
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readin(CHOICE):
CMS( 'CLRSCRN' ,1):
case CHOICE of
1 : for 1 := 1 to WINDOW_SIZE do
begin
TIME_WEIGHT_ARRAY(.1.) := 1/WINOOW_SI2E;
RANK_WEIGHT_ARRAY(.1.) :s 1;
ong;
2: bpegin
for I := 1 to WINDOW_SIZE ao
Degin
TIME_WEIGHT_ARRAY(.1.) := 1;
RANK_WEIGHT_ARRAY(.I1.) := O;
ond;
RANK_WEIGHT_ARRAY( .round(WINDOW_S1ZE/2).) := 1;
ona;
3: begtn

for 1 :» 1 to WINDOW_SIZE do
TIME_WEIGHT_ARRAY{.1.) e 1;

NO_ALPHA_TRIM(RANK_WEIGHT _ARRAY, WINDOW_SIZ2E):

CALCULATE(GAIN,WINDOW_SI2E, TIME_WEIGHMT_ARRAY,RANK_WEIGHT_ARRAY);
for 1 :® 1 to WINDOW_SIZf oo
RANK_WEIGHT _ARRAY(.1.) :o RANK_WEIGHT_ARRAY(.I.)/GAIN;

ond;
4;: Degin

CMS('CLRSCAN' ,1):
writeln;
write'n( 'Alpha-trimmed 1i1near filter’);
writeln;
writeIn(’'Are the desired fi1iter coeffictents saved(t-yes.0-no)?');
resdiIn(ANS ) ;
1f ANS = 1t then
m
reset(COEFF_FILE, 'namecFIR.COEFF . *');
for I := 1 to WINDOW_SIZE do
reagIn(COEFF_PILE, TIME_WEIGHT_ARRAY(.1.));
ond
else
Degin
CMS('CLRSCAN' . 1);
MANUAL _INPUT(TIME_WEIGHT_ARRAY ,WINDOW_SI2E);
writein(’'Do you want to save this set (1-yes.0-no)?'):
readin(ANS);
1f ANS = { then
n
rewr i te(COEFF_FILE, ‘name=FIR.COEFF *');
for 1 :s 1 to WINDOW_SIZE do
writ@In{COEFF_FILE, TIME_WEIGHT_ARRAY(.1.)):
ong;
end;

CMS( 'CLRSCRN' ,1);
DO_ALPHA_TRIM(RANK_WEIGHT_ARRAY ,WINDOW_SIZE):

CALCULATE(GAIN, WINOOW_SIZE, TIME_WEIGHT_ARRAY,RANK_WEIGHT_ARRAY);
writein(‘'The gatn for this set of coefficients is’ . GAIN:7:4,
‘ and the rank’);
writeIn( 'weighting coefficients have been divided by 1t.’');
for I := 1 to WINDOW SIZ2E do
RANK_WEIGHT _ARRAY(.1.) := RANK_WEIGHT_ARRAY(.1.)/GAIN;

ong;
$: Dbegin
writein(’Are the desired filter coefficients saved(i-yes,0-no)?');

readin(ANS);
1f ANS = 1 then

W
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begin
reset(COEFF_FILE, 'namesFIR.COEFF.*’);
for 1 := 1 to WINDOW_SIZE do
readin(COEFF_FILE, TIME_WEIGHT_ARRAY(.1.));
end
else
begin
CMS('CLRSCRN’,1);
writeln;
writeln(’Now input the ' ,WINDOW_SIZE:2,’ weight parameters for the’');
writeIn(’time ordered buffer’);
MANUAL_INPUT(TIME_WEIGHT_ARRAY,WINDOW_SIZE):
writeiln(’Do you want to save this set (i-yes,0-no)?’'):
readIn(ANS);
if ANS = 1 then
begin
rewrite(COEFF_FILE, ' name=FIR.COEFF.*');
for 1 := 1 to WINDOW_SIZE do
writeIn(COEFF_FILE, TIME_WEIGHT_ARRAY(.I.));
end;
end;

CMS( ‘CLRSCRN’ ,I);

writeln;

writein(’Now the same thing for the rank ordered buffer’);
MANUAL _INPUT (RANK_WEIGHT_ARRAY , WINDOW_SIZE);

CALCULATE(GAIN.NINDOH_SIZE.TIME_UEIGHT_ARRAV.RANK_UEIGHT_AR&AY);
for 1 := 9 to WINDOW_SI2E do
RANK_WEIGHT_ARRAY(.1.) :® RANK_WEIGHT_ARRAY(.I.)/GAIN;

end;
end; (= of case statement *)

writein(‘would you 1ike to ses the coefficients(i-yes,0-no)?’);
readin(l);

if 1 = 1 then

SHOW(TIME_WEIGHT_ARRAY ,RANK_WEIGHT_ARRAY ,WINDOW_SIZE);

writeln(’‘Would you 1ike to change anything(i-yes,0-no)?’);
readin(ANS); .
while ANS = 1 do
begin
writein(’'which set of coefficients 1->time, 2->rank’);
readin(CHOICE);
case CHOICE of :
1t lODIFV(TIHE_HEIGHT_ARRAV.VINDOH_SIZE):
2 : MODIFY(RANK_WEIGHT_ARRAY ,WINDOW_SI2E);
end;
SHOW (TIME_WEIGHT_ARRAY ,RANK_WEIGHT_ARRAY,WINDOW_SIZE):
writein(’'Change anything else(1-yes,0~-no)?’);
readIn(ANS);

end;
end; (* of GET_PARAMETERS *)
(------------------------.------------- ----- ccccmrercccncaer - -------n)
( *)
(* procedure INITIALIZE *)
(= *)
(e This procedure initializes the buffer window by reading the *)
(* first data value and using it to fi11 the first half of the *)
(* window and then fil11ing the rest of the window with the *)
(* subsequent data values read out of the data file. *)
(* *)

(#ercccccncnccnnrcacncerccnncncncccnccnecccrsaccrecccrrrcorecancna cmasnn)

procedure INITIALIZE ( WINDOW_SIZE : INTEGER;
var OLDEST_VALUE : DATA_ELEMENT_POINTER);
var
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ELEMENT,

NEXT_ELEMENT : DATA_ELEMENT_POINTER;
I
DUMMY ,

MIDDLE_OF_WINDOW : INTEGER;

pegin (* of INITIALIZE *)

new( ELEMENT) ; (* aliocate dynamic variable °*)
OLDEST_VALUE := ELEMENT;

MIDDLE_OF_WINDOW := round(WINDOW_SIZE/2); (* fing middie of window °®)
ELEMENT®.ACTUAL_VALUE := SIGNAL(" 1-MIDOLE_OF_WINDOW+1.):

for I :e 2 to WINODOW_SIZE do (* resd in cata *)
begin (* for last ha)f of wingow *)
new(NEXT_ELEMENT);
NEXT_ELEMENT®.ACTUAL_VALUE := SIGNAL(.I-MIDDLE_OF_WINOOW+1.);
ELEMENT® .NEXT_IN_TIME := NEXT_ELEMENT;
ELEMENT :»= NEXT_ELEMENT;

end;
end; (* of INITIALIZE *)
(--------.----------.---------------------------------- .............. -o)
(= .)
( procedure WEIGHT_TIME_BUFFER .)
(= .)
(* This procedure weights each of the siements in the time odered *)
(* buffer by the user input values stored in the TIME_WEIGHT_ARRAY®*)
(= .)

(.-_-----.----------.----------.----------------------------.---------')

procedure WEIGHT_TIME_BUFFER ( WINDOW_SIZE : INTEGER;
OLDEST_VALUE : DATA_ELEMENT_POINTER;
TIME_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE );

var

I : INTEGER:;
ELEMENT : DATA_ELEMENT_POINTER;

begin

ELEMENT := OLDEST_VALUE:
for I := 1 to WINDOW_SIZE do
in
ELEMENT® .MODIFIED_VAL := ELEMENT®.ACTUAL_VALUE *
TIME_WEIGHT_ARRAY(.I.);
ELEMENT := ELEMENT®.NEXT_IN_TIME;

oend;

oend;

(n--------- ..... cermcoscana chossceconcnesannesmnene D ceccvesccccace ')
(° *)
(= procedure RANK_ORDER .)
(e *)
(= This procedure takes the window that has been modified by the *)
(* time weights & uses an insertion sort to rank order sach of the*)
(= elements. At the end of this procedure each siement in the *)
(» window 18 ordered by size of the value as well as in time. *)
(* *)

(Pemwerroccevccrcrrccnccnnrcnccnvcrcncccncacasn L L L ca=t)

procedure RANK_ORDER ( WINDOW_SIZE : INTEGER;
var OLDEST_VALUE : DATA_ELEMENT_POINTER;
var SMALLEST_VALUE : DATA_ELEMENT_POINTER);

var
ELEMENT,
NEW_ELEMENT : DATA_ELEMENT_POINTER;
b ¢ : INTEGER;

D
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begin (*

SMALLEST_VALUE :* OLDEST_VALUE; (* start with first value as °*)
SMALLEST_VALUE® .NEXT_LARGEST := nil; (* smallest snd insert esch *)
NEW_ELEMENT :« OLDEST_VALUE®.NEXT_IN_TIME: (* 13t new valu to insrts)
for I := 2 to WINDOW_SI2f do (* Yoop through each value .)
begtin (* check f new vaiu<smatlliest®)
ELEMENT :o SMALLEST_VALUE; (* value in orcer )
1¢ NEW_ELEMENT® MODTFIED_VAL < SMALLEST_VALUE®.MODIFIED_VAL
then begin
NEW_ELEMENT® . NEXT_LARGEST := SMALLEST_VALUE;
SMALLEST_VALUE :+ NEW_ELEMENT;
ond
eise (* else fing proper order .)
n
wnile (ELEMENT®.NEXT_LARGEST <> nil) and
(NEW_ELEMENT® .MODIFIED_VAL >
ELEMENT® . NEXT_LARGEST® MODIFIED_vVAL) do
ELEMENT := ELEMENT® .NEXT_LARGEST:
(* ana tnsert in place *)
NEW_ELEMENT® .NEXT_LARGEST := ELEMENT® .NEXT_LARGEST;
ELEMENT® .NEXT_LARGEST := NEW_ELEMENT;
end;
NEW_ELEMENT := NEW_ELEMENTO .NEXT_IN_TIME: (* then go on to °)

of RANK_ORDER *)

ond; * insert next eimnt in order®*)
end; (* of RANK_ORDER )
(‘-------.----.-------------;-.---------.-----------------------------.)
( .)
(e procedure WEIGHT_RANK_BUFFER e)
(* *)
(e This procedure weignts sach of the elements in the time odered °*)
(* buffer by the user input values stored in the TIME_WEIGHT_ARRAY®)
(* *)

(#ecnccccccccncacccccncaa cscesccccsncccssanereccscancacosarcssccreaccaat)

procedure WEIGHT_RANK_BUFFER ( WINDOW_SIZE : INTEGER:
SMALLEST_VALUE : DATA_ELEMENT_POINTER:
RANK_WEIGHT_ARRAY : WEIGHT_ARRAY_TYPE );

var

1 : INTEGER;
ELEMENT : DATA_ELEMENT_POINTER;

begin

ELEMENT := SMALLEST_VALUE;
for 1 :s 1 to WINDOW_SIZ2E do

tn
ELEMENT® .MODIFIED_VAL := ELEMENT®.MODIFIED_VAL *

RANK_WEIGHT_ARRAY(.1.);
ELEMENT :» ELEMENTe.NEXT_LARGEST;

end;

oend;
(‘—--------—--------—----------------------—---—--------o---—---------l)
(= *)
(* procedure FILTER_M *)
(* *)
(* This procedure finds the middle valua of the time sequence, *)
(= which is the input to the filter, and sums the values of the .)
(» order ssquence, the filter output, and sends the two values v)
(- back t0 the main program t0 be stored in a graph file. -;
(. .

(----------------------------------------------------.----------------.)

procedure FILTER_M ( WINDOW_SIZE : INTEGER;
var OLDEST_VALUE : DATA_ELEMENT_POINTER:
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var SMALLEST_VALUE : DATA_ELEMENT_POINTER: 4
var FILTER_INPUT : REAL; P
var FILTER_OUTPUT : REAL); .
»
var 3
x -
MIDDLE_OF _WINDOW : INTEGER: h
INPUT EL(IIENT 4
OUTPUT ELEMENT : DATA_ELEMENT_POINTER; .
o
begin (* of FILTER_M ) ¢
>
MIDDLE_OF_WINDOW := round(WINDOW_SI2E/2); .
INPUT | ELEMENT :* OLDEST_ VALUE ’
OUT’UT_!LEHENT :® SMALLEST _VALUE; "~
FILTEROUTPUT := O; ]
for 1 := { to WINDOW_SI2E do (* step thru window to calc *)
begin (* output .) ,
1?1« HIDDL!_DF_UINDOU then (* filter input is miadle val®) .
INPUT_ELEMENT := INPUT_ELEMENT® NEXT_IN_TIME: .
FILTER OUTPUT : e FILT!R OUTPUT + OUTPUT ELEMENT® .MODIFIED _VAL; ,
oUTPUT !LEI!NT HL OUTPU'I’ ELEMENT® .NEXT LARGEST 1,
ond; )
FILTER_INPUT := INPUT_ELEMENT®.ACTUAL_VALUE:; ).
ong; (» of FILTER_M ) :
(------------------.--------------------------------------------------.) :
(. .) -
(* procedure STEP_ONE *) ™~
(e .) .:'
(° Step the window over one data value by deleting out the oldest *)
(e value from the time sequence and then creating .) o
(e a new dynamic variable. reading in i1ts new value, and *) v
(e ingserting it at the end of the time sequence. 'g Nyt
(. . -
(.---------.---.------------------.---.--------------------------------)
procecure STEP_ONE  (var OLDEST_VALUE : DATA_ELEMENT_POINTER; N
NEXT_VAL : INTEGER; f

WINDOW_SIZE : INTEGER):

var |

A

J, .
DUMMY : INTEGER; §
ELEMENT, '
TARGET_ELEMENT : DATA_ELEMENT_POINTER:

begin (= of STEP_ONE *) )
(e = = ¢ gelete oldest value from window * * * @) ¢
TARGET_ELEMENT := OLDEST_VALUE; 'S
OLDEST_VALUE :o OLDEST_VALUE® .NEXT_IN_TIME: (* celete from time seq®) )
d18pose( TARGET_ELEMENT) ; (* ace-al)locate dynamic varb) °) Y

I}
(e » = o put new element INtO window © * © ) :ﬁ
new( ELEMENT ) ; :
TARGET_ELEMENT :« OLDEST_VALUE; (* start at beginning to fina*) "\
for v :» 1 to (wmoow $12e-2) ao (* the most recent value *) !
TARG!T ELEMENT := TARGET ELEHENTO NEXT_IN_TIME:

TARGET_ELEMENT® .NEXT_IN_TIME := ELEMENT; (* agd new value *)
ELEMENT® NEXT_IN_TIME :o ni); (¢ and put n1l value on end *) .

-
-

ELEMENT® . ACTUAL_VALUE ‘= SIGNAL( .NEXT_VAL.)

R

ona: (e of STEP_ONE )

N
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“K
begin (* of FILTER - MAIN PROGRAM =) ;
GET_PARAMETERS (WINDOW_SI2E, TIME_WEIGHT_ARRAY ,RANK_WEIGHT _ARRAY ) ; D
xux‘ruuzt(uxmou SIZE,OLDEST_VALUE);
for 1 :® 1 to SIGNAL _SIZE do i
begin .
WEIGHT_TIME_BUFFER(WINDOW_SIZE,OLDEST_VALUE,TIME_WEIGHT_ARRAY): y
RANK OlD!R(UX'DON SIZE, oLDEST _VALUE, SMALLEST VALUE). )
H!IGHT RANK lurn'i(wxmov SIZE SMALLEST_ VALUE RANK_WEIGHT_ARRAY); .
FILTER n(wxmov SXZE.OLD!ST VALUE, SMALLEST _VALUE, F!LT!R INPUT, i
“FILTER OUTPU‘I’). A
TEWP(.1.) :=» FILTER_OUTPUT; {
it 1 <> SIGNAL SIZE then )
STEP ON!(OLDES'I’ _VALUE, (I+round(WINDOW_SIZE/2)),.WINDOW_SIZE); :
end;
for 1 :» 1 to SIGNAL_SIZE do o
SIGNAL(.I.) := TEMP(.1.): ’
ond; (* of FILTER - MAIN PROGRAM =) )
L}
(....‘..“‘.O‘..‘..‘.‘..‘...‘......“‘“O"..“l.‘.‘-..-“".....‘.“..) :
(e °) ,
(e proceaure TRANS_AND_STORE *) he
(e *)
(* This procedure takes the transfer function of the filter by *)
(s dividing the magnitude of the DFT of the output of the fi{lter .) -
(* oy the magnitude of the DFT of the input to the filter. This *) >
(= result ts then stored for the number of trials attempted SO *)
(= that the indiviaual transfer function of each trial s *) :
(» remembered for further processing. *) p,
(= *) -
(‘-'..‘.......‘.‘..l‘."-“‘.-‘..‘.-'-“".‘.“.“""C“‘ll‘.“““‘.l, _
proceadure TRANS_AND_STORE ( FREQX, FREQY : SIGNAL_TYPE; ;
var Tyx_SUM : MEDIAN_TVYPE;
TRIAL : INTEGER ); it
var ‘
at
1 : INTEGER; o
FREQY : REAL;
\
L
»
begin 'y
for 1 := 1 to SIGNAL_SIZE div 2 do o
begin b
FREQT := FREQY(.Il.)/FREQX(.1.):
Tyx_SUM(.I,TRIAL.) := Tyx_SUM(.I1.TRIAL.) + FREQT; -
ong; Ny,
.:.
N
(‘.‘..‘..‘.‘O."‘.‘.‘...“'.‘.........‘."".“-“‘“.l.'.‘.........‘.‘) -.:.
(* *)
(s procedure MEDIAN_AND_PRINT *) o
(* .) b
(* This procedure sorts the data of the previous)y calculated *) M
(* transfer functions on a point by point basis. The median valus *) "
(* of sach point is selected as the output of the filter and stored °*) '
(* tng flle for further graphing. *)
(° *)
(‘.‘O.“..‘...‘.‘..“.‘..'..“".““‘.“..‘..-.".O!“.‘..‘...O“ltl") -
procedure MEDIAN_AND_PRINT ( ORDER_ARRAY : MEDIAN_TYPE: iy
TRIALS : INTEGER ); ‘e
‘,;bi“
var *9‘:%
\'*
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Tyx . SIGNAL_TYPE; n
M. s
NUN,
INDEX, Y
INDEX2, "|(
INC. W
T_INOEX, '::'.
1 : INTEGER; )
T_VALUE, Vi
LARGEST_T,
NORN_T : REAL: K
FILet : TEXT; "
'.-:‘
(P = = = ¢ 0 o =2 o o 2 o o o = o oo =acaeoe-a- e e e = e eee= - =8) Yy
(e *) "
(* function LOG °) st
(* .)
(* This function calculates the base 10 logarithm of X. The Pascal *) .
(* compiier only provices the natural logartithm as an intrinsic *)
(* function. The bDase 10 logarithm 18 calculated by '= Y
(. . (]
(= %y X @ In X .) ’
(* w coose .) :
(= n 10 *) ¢
(' o)
(% = = @ = e e e e e ee e e e et et e et e ceaa o m s ) poy
function LOG (X:REAL):REAL: )
x,‘
begin A
it X = 0.0 then )
X := 0.00000001:; .
LOG := In(X)/I1n(10.0): =
end;
W)
begin ° : (* of MEDIAN_AND_PRINT ) &

INDEX := SIGNAL_SI2E div 2;

ra A
P2

INDEX2 :o SIGNAL_SIZE; N
for I :s 1 to INDEX ago (* sort each point of Tyx .)
begin L
for J := 1 to TRIALS oo _'x
Tyx(.J.) := ORDER_ARRAY(.1,J.): K
SORT(TRIALS,Tyx); >
for J :* 1 to TRIALS do > X
ORDER_ARRAY(.I,v.) := Tyx(.J.); ¢
ond; -
for I := 1 to INDEX do (* choose median as response*) ¢
Tyx(.1.) := DRDER_ARRAY(.I,round(TRIALS/2).);: -
readin(ANS); ray
it ANS = 1 then WK
begin v,
LARGEST_T := Tyx(.1.); :;
T_VALUE :» LARGEST_T; )
T_INDEX :» 1; AN
for 1 := { to INDEX do (* find largest value of Tyx *) MR
begin (* for normalization *) -
LARGEST_T :* max(LARGEST_T,Tyx(.I.)); =
1# LARGEST_T <> T_VALUE then hYy
begin '
T_INDEX := I: Y
T_VALUE := LARGEST_T; o)
end; ‘q‘g:
ond; '
NORM_T := O; -
INC 7= round(INDEX * 0.02): (* choose interval around *) ey
NUM :e O; (* largest valua for normaliz*) W
for 1 := max(1,T_INDEX-INC) to min(T_INDEX+INC,INOEX) do ‘,'
pegin (* calculate norm factor *) RS
NORM_T := NORM_T + Tyx(.1.); o~
n.“‘
R«
. e

'“'h\"\" Y Py
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1!
NUM := NUM « 1; .\;
end:; e
NORN_T := NORM_T/NUM;
for 1 := 1 to INDEX do (* normalize Tyx *) ity
Tyx(.1.) :* 20°LOG(Tyx(.I.)/NORM_T); 'y,
ond; by
L}
rewr1te(FILET, ‘nameeMEOTRANS .POATA. ¢ ); Y
for I :e 1 to INDEX do N
writeIn(FILET, (1/INDEX2):10:8,° ‘. Tyx(.1.)); L
end;
Y
~
(.......‘.‘.‘.-...."'.“.“..........‘.O--'l‘."......‘..‘..‘.'..‘....) Ny
(* *) e
(* procedure AVERAGE_AND_PRINT -; -
(. » ,
(* This procecure averages the data of the previously calculated *) Q}
(* transfer functions on 8 point by point basis. The average valus *) )
(* @&t esch point 1s calculated the output of the filter and stored *)
(* 1na file for further graphing. *) \.‘:,
(* *) l.'t
(...‘....‘.‘l".l-‘."..-“....‘.....-'.‘.O..I".-"‘.-..O..“‘.‘l'...--) ‘.
procedure AVERAGE_AND_PRINT ( ARR : MEDIAN_TYPE; AL
TRIALS : INTEGER ):
X
v,
var ;c‘
Y
Tyx_$S : SIGNAL_TYPE: »}:
ANS’, i)
NUM, o)
INDEX, .
INDEX2,
INC, (8
T_INDEX, .
» ~
1 : INTEGER; Y
T_VALUE, NS
LARGEST_T, o
NORM_T : REAL; .
FILET : TEXT; .
Al
(----------- ..... L - *® e e e e e e == -)
( *) ,
(- function LOG *) Y3
(* *) .
(= This function calculates the base 10 logarithm of X. The Pascal *) b
(* compiler only provides the natural logarithm as an intrinsic ) '
(* function. The base 10 logarithm is calculated by ‘; ‘g:
(c L d \‘.'
(» log X = In X .) ‘l"
(* —eee- *) d,
(* In 10 *) }
(* *) A
(----------------- ........ - . e e ® e e e e - .)
function LOG (X:REAL):REAL; " ‘
begin |
if X = 0.0 then )
X :s 0.00000001; i
LOG := 1n(X)/1n(10.0); o
end; Yt
) )
begin (* of AVERAGE_AND_PRINT ") )
o
INDEX := SIGNAL_SIZE div 2; 4
INDEX2 := SIGNAL_SIZE; ;
for 1 := 1 to INDEX do p
]
™
N
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-
e e e e St

in (* average sach point to s)
Tyx_S(.1.) := 0.0; (* calculate Tyx
for J := 1 t0o TRIALS do

Tyx_S(.1.) := Tyx_S(.1.) ¢ ARR(.I1,4.); N

-
~—
-
b

end; .
readIn(ANS); N
1f ANS = 1 then 8,
begin (* choose largest value of *) A
LARGEST_T := Tyx_S(.1.): (* Tyx to normalize .) v
T_VALUE :® LARGEST_T:
T_INDEX := 1:
for I := 1 to INDEX do Y
begin (8
LARGEST_T := max(LARGEST_T,Tyx_S(.1.)): Y
1# LARGEST_T <> T_VALUE then v
begin \]
T_INDEX := I; !
TOVALUE := LARGEST_T;
end; .
end; W
'DRI_T L °: -
INC :» round(INDEX * 0.02); (* calculate normalization *) =
NUM := O; (* factor over range NEar max®) =
for I :e max(1,T_INDEX-INC) to min(T_INDEX+INC, INDEX) do .
begin 4
NORM_T := NORM_T + Tyx_S(.1.):
NUM = NUM + 1;
ond; ) -
NORM_T := NORM_T/NUM; :
for I := 1 to INDEX do (* normatlize Tyx .) )
Tyx_S(.1.) := 20°LOG(Tyx_S(.1.)/NORM_T); v
end K
else ‘
for 1 :e 1 to INDEX do -
Tyx_S(.1.) := Tyx_S(.1.)/TRIALS;

rewr1to(FILET, 'name=SUMTRANS .PDATA.*'); 3
for I := 1 to INOEX do b
writeIn(FILET,(I/INDEX2):10:8,° *,Tyx_S(.1.)); e

and;

begin (*  Of MEGAMEDIAN *) ;

teormout (QUTPUT);
reset( INPUT, ‘name=TRIALS.MEGA.B’);
readin(TRIALS):
datetime(DATE, TIME);
readstr(str(TIME),1:2,CH,SEED1:2,CH,SEED2):
1 := J*SEED1*SEED2+1+SEED1+SEED2;
puMMy := random(l);
SIGNAL_SIZ2E := 2%56;
for 1 :» 1 to TRIALS do
begin
reset( INPUT, ‘name=INDATA .MEGA.B' );
MAKEDATA(SIGNAL):
WINDOW(SIGNAL):
FREQ(SIGNAL,FFTX_MAG):
FILTER(SIGNAL);
FREQ(SIGNAL ,FFTY_MAG);
TRANS_AND_STORE (FFTX_MAG,FFTY_MAG, Tyx_SUM,1); 8
end;
NED!AN_AND_PRINT(Tyx_SUM.TRIALS):
AVERAGE_AND_PRINT(Tyx_SUM,TRIALS):
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kg 38

ond. (= of MEGAMEDIAN *)
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